欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1835-1844.doi: 10.3724/SP.J.1006.2017.01835

• 耕作栽培·生理生化 • 上一篇    下一篇

单作套作大豆叶片氮素积累与光谱特征

谌俊旭,黄山,范元芳,王锐,刘沁林,杨文钰*,杨峰*   

  1. 四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
  • 收稿日期:2017-03-09 修回日期:2017-05-10 出版日期:2017-12-12 网络出版日期:2017-06-08
  • 通讯作者: 杨峰, E-mail: f.yang@sicau.edu.cn; 杨文钰, E-mail: mssiyangwy@sicau.edu.cn
  • 基金资助:

    本研究由国家重点研发计划项目(2016YFD0300602)资助。

Remote Detection of Canopy Leaf Nitrogen Status in Soybean by Hyperspectral Data under Monoculture and Intercropping Systems

CHEN Jun-Xu, HUANG Shan, FAN Yuan-Fang, WANG Rui, LIU Qin-Lin, YANG Wen-Yu*,YANG Feng*   

  1. Key Laboratory of Crop Eco-physiology and Farming System in Southwest, the Ministry of Agriculture / College of Agronomy, Sichuan Agricultural University / Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan 611130, China
  • Received:2017-03-09 Revised:2017-05-10 Published:2017-12-12 Published online:2017-06-08
  • Contact: 杨峰, E-mail: f.yang@sicau.edu.cn; 杨文钰, E-mail: mssiyangwy@sicau.edu.cn
  • Supported by:

    The work was supported by the National Key Research and Development Program of China (2016YFD0300602).

摘要:

种植模式和氮肥水平直接影响作物的生长和氮素的吸收, 无损、即时监测大豆叶片氮素水平对大豆生产中的氮肥精确管理十分重要。本研究设置4个氮肥水平, 分析单作套作下大豆在不同生育时期叶片氮素动态和光谱特征, 明确对叶片氮素敏感的光谱特征参数, 构建单作套作大豆通用的叶片氮素积累量估测模型。结果表明, 随大豆生育时期的推进, 单作套作种植模式下的大豆冠层叶片氮素积累量均呈现单峰变化趋势, 最大值出现在N3处理下的结荚期, 两种模式两年最大值平均分别为8.70 g m–2和8.38 g m–2;不同生育时期和种植模式的大豆冠层原始反射光谱的变化规律与冠层叶片氮素变化规律均为先增加后降低, 原始反射光谱在700~1000 nm波段的反射率以结荚期为拐点先增大后减小, 最大反射率达到60%~70%左右;通过对单作套作大豆冠层光谱一阶导数变换, 红边幅值呈现先增加后降低的趋势, 同时红边位置随叶片氮积累量的增加和减小出现“红移”与“蓝移”现象。经波段自由组合和回归分析表明, 以DSI (771、755)构建的线性(y = –1.249+3.209x, R2 = 0.847)和乘幂(y = –1.470x1.676, R2 = 0.872)模型能较精确的估测不同生育时期大豆冠层叶片氮素状况。

关键词: 大豆, 氮素积累, 光谱反射率, 模型

Abstract:

Non-destructive monitoring of soybean nitrogen status is important for precise N management in soybean production. In this study, the quantitative correlation between soybean leaf nitrogen status and canopy hyperspectral reflectance was investigated. Field experiments were conducted. With four nitrogen application rates for two years under monoculture and intercropping systems. The nitrogen accumulation of canopy leaves showed a single-peak changing trend in the process of soybean growth. The maximum value in monoculture and intercropping was 8.7 g m–2, 8.38 g m–2, respectively, at pod stage under N3 treatment. The raw hyperspectral reflectance and the leaf nitrogen accumulation had the same changing trend at different growth stages with different planting patterns. The peak value of the raw hyperspectral reflectance in the 700–1000 nm occurred at pod stage. In the first-order derivative spectrum, the red edge amplitude values increased first and then decreased. The position of the red edge changed as “Red shift” and “Blue shift” with the increase or decrease of leaf nitrogen accumulation. The results of the correlation analysis showed that the linear model and the power model by using the Difference Spectral Index (DSI: 771, 755) based on the best spectral band combination (BSBC) had the greatest accuracy to estimate the leaf nitrogen status of soybean.

Key words: Soybean, Nitrogen accumulation, Hyperspectral reflectance, Model

[1] 李卫国, 李秉柏, 王志明, 张娅香, 黄晓军. 作物长势遥感监测应用研究现状和展望. 江苏农业科学, 2006, (3): 12–15 Li W G, Li B B, Wang Z M, Zhang Y C, Huang X J. Status and prospect on research and application of crop condition monitoring using remote sensing. Jiangsu Agric Sci, 2006, (3): 12–15 (in Chinese with English abstract) [2] 吴华兵, 朱艳, 田永超, 姚霞, 刘晓军, 周治国, 曹卫星. 棉花冠层高光谱指数与叶片氮积累量的定量关系. 作物学报, 2007, 33: 518–522 Wu H B, Zhu Y, Tian Y C, Yao X, Liu X J, Zhou Z G, Cao W X. Relationship between canopy hyperspectral index and leaf nitrogen accumulation in cotton. Acta Agron Sin, 2007, 33: 518–522 (in Chinese with English abstract) [3] 冯伟, 王晓宇, 宋晓, 贺利, 王永华, 郭天财. 基于冠层反射光谱的小麦白粉病严重度估测. 作物学报, 2013, 39: 1469–1477 Feng W, Wang X Y, Song X, He L, Wang Y H, Guo T C. Estimation of severity level of wheat powdery mildew based on canopy spectral reflectance. Acta Agron Sin, 2013, 39: 1469–1477 (in Chinese with English abstract) [4] 胡军林. 主要农作物缺氮症状及防治措施. 农技服务, 2008, 25(1): 54, 108 Hu J L. Causes of nitrogen deficiency in main crops and preventive measures. Serves Agric Technol, 2008, 25(1): 54, 108 (in Chinese with English abstract) [5] 郝小雨, 周宝库, 马星竹, 高中超. 长期不同施肥措施下黑土作物产量与养分平衡特征. 农业工程学报, 2015, 31(16): 178–185 Hao X Y, Zhou B K, Ma X Z, Gao Z C. Characteristics of crop yield and nutrient balance under different long-term fertilization practices in black soil. Trans CSAE, 2015, 31(16): 178–185 (in Chinese with English abstract) [6] Bekele W. Effect of soybean varieties and nitrogen fertilizer rates on yield, yield components and productivity of associated crops under maize/soybean intercropping at Mechara, Eastern Ethiopia. Agric For Fish, 2016, 5(1): 1 [7] 王劲松, 焦晓燕, 丁玉川, 董二伟, 白文斌, 王立革, 武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015, 41: 1269–1278 Wang J S, Jiao X Y, Ding Y C, Dong E W, Bai W B, Wang L G, Wu A L. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium. Acta Agron Sin, 2015, 41: 1269–1278 (in Chinese with English abstract) [8] 胡珍珠, 潘存德, 肖冰, 潘鑫. 基于光谱特征参量的核桃叶片氮素含量估测模型. 农业工程学报, 2015, 31(9): 180–186 Hu Z Z, Pan C D, Xiao B, Pan X. Spectral characteristic parameter-based models for foliar nitrogen concentration estimation of Juglans regia. Transact CSAE, 2015, 31(9): 180–186 (in Chinese with English abstract) [9] Walburg G, Bauer M E, Daughtry C S T. Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agron J, 1982, DOI: 10.2134/agronj1982.00021962007400040020x [10] 岳延滨, 聂克艳, 黎瑞君, 李莉婕, 孙长青, 彭志良, 赵泽英. 不同施氮水平辣椒地上部全氮含量与冠层光谱反射率的相关性. 贵州农业科学, 2014, (11): 244–247 Yue Y B, Nie K Y, Li Y J, Li L J, Sun C Q, Peng Z L, Zhao Z Y. Correlation of total nitrogen content in overground part of pepper at different nitrogen application level with canopy spectral reflectance. Guizhou Agric Sci, 2014, (11): 244–247 (in Chinese with English abstract) [11] 田永超, 杨杰, 姚霞, 曹卫星, 朱艳. 利用叶片高光谱指数预测水稻群体叶层全氮含量. 作物学报, 2010, 36: 1529–1537 Tian Y C, Yang Jie, Yao X, Cao W X, Zhu Y. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice. Acta Agron Sin, 2010, 36: 1529–1537 (in Chinese with English abstract) [12] Wei F, Zhang H Y, Zhang Y S, Qi S L, Heng Y R, Guo B B, Ma D Y, Guo T C. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Res, 2016, 198: 238–246 [13] 宋英博. 不同施氮量对大豆蛋白质和脂肪含量的影响. 黑龙江农业科学, 2010, (7): 52–53 Song Y B. Effect of different nitrogen application on protein and fat content in soybean. Heilongjiang Agric Sci, 2010, (7): 52–53 (in Chinese with English abstract) [14] 董守坤, 龚振平, 祖伟. 植物营养与肥料学报, 2010, 16(1): 65–70 Dong S K, Gong Z P, Zou W. Effects of nitrogen nutrition levels on N-accumulation and yields of soybean. Plant Nutr Fert Sci, 2010, 16: 65–70 (in Chinese with English abstract) [15] 杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆,振兴大豆产业. 大豆科学, 2008, 27: 1–7 Yang W Y, Yong T W, Ren W J, Fan G Q, Mu J Y, Lu X L. Development of soybeans, the revitalization of soybean industry. Soybean Sci, 2008, 27: 1–7 (in Chinese with English abstract) [16] 崔亮, 苏本营, 杨峰, 杨文钰. 带状套作大豆群体冠层光能截获与利用特征. 中国农业科学, 2015, 48: 43–54 Cui L, Su B Y, Yang F, Yang W Y. Relationship between light interception and light utilization of soybean canopy in relay strip intercropping system. Sci Agric Sin, 2015, 48: 43–54 (in Chinese with English abstract) [17] 高志英, 丁圣彦, 谷艳芳, 邢倩. 不同光环境与氮肥互作对玉米气孔特征的影响. 河南农业科学, 2008, 37(9): 15–19 Gao Z Y, Ding S Y, Gu Y F, Xing Q. The interactive effects of light condition and nitrogen supply on stomatal characteristics of maize. J Henan Agric Sci, 2008, 37(9): 15–19 (in Chinese with English abstract) [18] 何挺, 刘荣, 王静. 野外波谱测量的影响因素研究.地理与地理信息科学, 2003, 19(5): 6–10 He T, Liu R, Wang J. The influences factors on field spectrometry. Geography Geo-Inform Sci, 2003, 19(5): 6–10 (in Chinese with English abstract) [19] 杨德金, 彭守华. 秦优12不同播期、密度和施氮水平对产量的影响. 安徽农学通报, 2010, 16(13): 100–102 Yang D J, Peng S H. Effects of different sowing date, density and nitrogen application on yield. Anhui Agric Sci Bull, 2010, 16(13): 100–102 (in Chinese) [20] 郭天财, 宋晓, 马冬云, 冯伟, 王永华. 施氮水平对2种穗型冬小麦品种产量及氮素吸收利用的影响. 西北植物学报, 2008, 28: 554–558 Guo T C, Song X, Ma D Y, Feng W, Wang Y H. Effects of nitrogen application on grain yield, n absorption and utilization rate in winter wheat with two spike-types. Acta Bot Boreali-Occident Sin, 2008, 28: 554–558 (in Chinese with English abstract) [21] 宁堂原, 焦念元, 李增嘉, 张民, 赵春, 韩宾, 邵国庆. 施氮水平对不同种植制度下玉米氮利用及产量和品质的影响. 应用生态学报, 2006, 17: 2332–2336 Ning T Y, Jiao N Y, Li Z J, Zhang M, Zhao C, Han B, Shao G Q. Effects of N application rate on N utilization, yield and quality of maize under different cropping systems. Chin J Appl Ecol, 2006, 17: 2332–2336 (in Chinese with English abstract) [22] 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 施氮量对套作大豆花后光合特性、干物质积累及产量的影响. 草业学报, 2011, 20: 233–238 Yan Y H, Yang W Y, Zhang X Q, Chen X L, Chen Z Q. Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming. Acta Pratac Sin, 2011, 20: 233–238 (in Chinese with English abstract) [23] 刘小明, 雍太文, 苏本营, 刘文钰, 周丽, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统中作物产量的影响. 作物学报, 2014, 40: 1629–1638 Liu X M, Yong T W, Su B Y, Liu W Y, Zhou L, Song C, Yang F, Wang X C, Yang W Y. Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agron Sin, 2014, 40: 1629–1638 (in Chinese with English abstract) [24] 田艳洪, 刘元英, 张文钊, 罗盛国. 不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响. 东北农业大学学报, 2008, 39(5): 15–19 Tian Y H, Liu Y Y, Zhang W Z, Luo S G. Effect of N fertilization at different stage on nitrogenase activity and yield of soybean. J Northeast Agric Univ, 2008, 39(5): 15–19 (in Chinese with English abstract) [25] 周丽丽, 冯汉宇, 阎忠敏, 刘克, 周顺利. 玉米叶片氮含量的高光谱估算及其品种差异. 农业工程学报, 2010, 26(8): 195–199 Zhou L L, Feng H Y, Yan Z M, Liu K, Zhou S L. Hyperspectral diagnosis of leaf N concentration of maize and variety difference. Transact Chin Soc Agric Engin, 2010, 26(8): 195–199 (in Chinese with English abstract) [26] 冯伟, 朱艳, 姚霞, 田永超, 郭天财, 曹卫星. 利用红边特征参数监测小麦叶片氮素积累状况. 农业工程学报, 2009, 25(11): 194–201 Feng W, Zhu Y, Yao X, Tian Y C, Guo T C, Cao W X. Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters. Trans CSAE, 2009, 25(11): 194–201 (in Chinese with English abstract) [27] 梁留锁, 马旭, 乔欣. 大豆叶片氮素含量检测技术的试验研究. 农机化研究, 2010, 32(11): 121–124 Liang L S, Ma X, Qiao X. The total leaf nitrogen determination of the soybean's canopy based on spectral reflection. J Agric Mech Res, 2010, 32(11): 121–124 (in Chinese with English abstract) [28] 何挺, 程烨, 王静. 野外地物光谱测量技术及方法. 中国土地科学. 2002, 16(5): 30–36 He T, Cheng Y, Wang J. The technology and method of field spectrometry. China Land Sci, 2002, 16(5): 30–36 (in Chinese with English abstract) [29] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47: 1489–1501 Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!