欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 1-15.doi: 10.3724/SP.J.1006.2024.34012

• 综述 •    下一篇

种子休眠与萌发调控的研究进展

宋松泉1,3,*(), 唐翠芳2,3, 雷华平3, 姜孝成2, 王伟青1, 程红焱1   

  1. 1中国科学院植物研究所, 北京 100093
    2湖南师范大学生命科学学院, 湖南长沙 410081
    3湘南学院南岭现代种业研究院, 湖南郴州 423099
  • 收稿日期:2022-12-18 接受日期:2023-09-08 出版日期:2024-01-12 网络出版日期:2023-09-08
  • 通讯作者: *宋松泉, E-mail: sqsong2019@163.com
  • 基金资助:
    国家科技支撑计划项目(2012BAC01B05);郴州国家可持续发展议程创新示范区建设省级专项(2022sfq06);郴州市人民政府和湘南学院人才项目资助

Research progress of seed dormancy and germination regulation

SONG Song-Quan1,3,*(), TANG Cui-Fang2,3, LEI Hua-Ping3, JIANG Xiao-Cheng2, WANG Wei-Qing1, CHENG Hong-Yan1   

  1. 1Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
    3Nanling Research Institute for Modern Seed Industry, Xiangnan University, Chenzhou 423099, Hunan, China
  • Received:2022-12-18 Accepted:2023-09-08 Published:2024-01-12 Published online:2023-09-08
  • Contact: *E-mail: sqsong2019@163.com
  • Supported by:
    National Key Technology Support Program of China(2012BAC01B05);Provincial Special Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone Construction(2022sfq06);Chenzhou Municipal People’s Government and Xiangnan University Talent Project

摘要:

休眠使植物种子能够为萌发安排时间, 直到环境条件变得有利于幼苗的存活与生长。种子的休眠特性具有重要的生态适应性意义和显著的农业价值。植物激素脱落酸(ABA)和赤霉素(GA)是种子休眠与萌发的关键因素, 处于休眠状态的成熟种子含有高水平的ABA和低水平的GA; ABA诱导和维持种子休眠, 而GA拮抗ABA的作用和促进种子萌发。萌发延迟-1 (DOG1)是种子休眠的主要调控因子, 与ABA协同作用延迟萌发。DOG1通过与PP2C ABA过敏感萌发(AHG1/AHG3)结合以增强ABA的信号转导, 以及抑制AHG1的作用以增加ABA的敏感性和强加种子休眠。印记基因在受精前后受到表观遗传机制的调控, 与种子休眠的建立与释放密切相关。近年来, 种子休眠的调控研究取得了显著的进展。本文综述了植物激素ABA和GA对种子休眠与萌发的控制, DOG1调控种子休眠的作用机制, 以及种子休眠与萌发的表观遗传调控, 并提出了在本领域需要进一步研究的科学问题, 以期为深入理解种子休眠与萌发的分子机制、抗穗萌发育种以及促进休眠种子的萌发提供参考。

关键词: DOG1, 表观遗传, 分子机制, 植物激素, 种子休眠

Abstract:

Dormancy enables plant seeds to time germination until environmental conditions become favorable for seedling survival and growth. The dormancy characteristics of seeds are of important ecological adaptive significance and notable agricultural value. Phytohormone abscisic acid (ABA) and gibberellin (GA) are the key factors for seed dormancy and germination. Mature seeds in dormancy state contain high levels of ABA and low levels of GA. ABA induces and maintains seed dormancy, while GA antagonizes ABA and promotes seed germination. DELAY OF GERMINATION-1 (DOG1) is a major regulator of seed dormancy and had a synergistic effect with ABA to delay germination. DOG1 enhances ABA signal transduction by combining with PP2C ABA hypersensitive germination (AHG1/AHG3), and inhibits the action of AHG1 to increase ABA sensitivity and impose seed dormancy. Imprinted genes are regulated by epigenetic mechanisms before and after fertilization, and are closely related to the establishment and release of seed dormancy. In recent years, remarkable progress has been made in the regulation of seed dormancy. In the present paper, we reviewed the effects of phytohormones ABA and GA on seed dormancy and germination, the action mechanism regulating seed dormancy by DOG1, and the epigenetic regulation of seed dormancy and germination. In addition, we also propose some scientific issues that need to be further investigated in this field to provide some information for understanding the molecular mechanism of seed dormancy and germination, breeding in anti-preharvest sprouting in crop plants, and promoting the germination of dormant seeds.

Key words: DOG1, epigenetic, molecular mechanism, phytohormone, seed dormancy

图1

种子休眠与萌发的植物激素调控网络 3种主要的植物激素, 包括脱落酸(ABA)、赤霉素(GA)和生长素(auxin), 是种子休眠与萌发的关键因素。成熟种子处于休眠状态, 含有高水平的ABA和低水平的GA。几种转录因子(ABI4、DDF1、OsAP2-39、AP2和CHO1)通过正调控(+) ABA的积累和降低GA的含量参与种子的休眠。当种子休眠被打破时, 种子就变为非休眠状态, 能够开始萌发。在此阶段, ABA/GA的平衡通过几乎所有其他植物激素的正和负调控信号被维持, 包括乙烯(ET)、油菜素内酯(BR)、茉莉酸(JA)、水杨酸(SA)、细胞分裂素(CTK)和独脚金内酯(SL)。转录因子(包括ARF、MYB96、ABI3、ABI4和ABI5)通过与CYP707A1和CYP7072相互作用来调控ABA的生物合成, 而GA负调控(-)是通过DELLA基因实现的。这种平衡被持续保持直到种子出苗。引自Sohn等[8]。"

图2

拟南芥种子休眠的DOG1基因(启动子为红色, 编码区为绿色)的转录调控模型 GBL1顺式元件的下游为INDEL (插入缺失标记), 一个285 bp的序列。INDEL存在于Ler-0材料(弱休眠)的DOG1启动子中。然而, INDEL在Cvi-0生态型(强休眠)中是缺陷的。INDEL在体内直接影响bZIP67反式激活DOG1的能力, 以及可以解释在生态型之间观察到的DOG1转录本水平和休眠的变化。这种与DOG1表达的可塑性相偶联的DOG1自然等位基因的变异在田间具有重要的适应性意义, 因为季节性环境因素可能变化很大, 而种子萌发的最适时间是原始的。ETR1: 乙烯反应-1; DRE/CRT: 脱水反应元件/C-重复序列; TPL1: Topless-1; ERF12: 乙烯反应转录因子-12; GBL1和GBL2: G-box-like-1和2; SOM: Somnus。引自Carrillo-Barral等[17]。"

图3

描述亲本等位基因的不同表观遗传修饰组合如何影响胚乳基因表达和控制种子休眠的模型 其母系等位基因被FIS-PRC2介导的H3K27me3抑制的基因编码诱导萌发必需的乙烯途径基因。这些基因的父系等位基因可能被非典型的RdDM途径建立的CHHm所抑制。冷胁迫诱导的AGO6也可能靶定母系等位基因并通过非典型的RdDM途径涉及冷胁迫反应的CHHm。REF6与CTCTGYTY基序(Y = C或者T)结合以激活靶基因。在休眠种子中, 母系等位基因被H3K27me3去甲基化酶REF6激活, 以及这些基因表现出母系偏向的表达模式。在非休眠种子中, 这些基因是双等位基因表达的, 可能是因为RdDM途径在休眠诱导条件下特别活跃。FIS-PRC2、SUVH家族蛋白和CMT3分别在PEG的母系等位基因上建立H3K27me3、H3K9me2和CHGm。因为REF6结合位点上的CHGm抑制REF6的结合活性, 因此母系等位基因被持续沉默, 这些基因在整个胚乳发育过程中(包括萌发)表现出父系偏向的基因表达模式。ABI3是一个建立种子休眠的重要转录因子, 属于这种类型。母系等位基因上具有单一H3K9me2的基因在整个发育过程中被完全沉默。这些母系专一的表观遗传修饰在授粉后4 d的发育胚乳中被检测到。引自Sato和K?hler[2]。"

[1] Bewley J D, Bradford K J, Hilhorst H W M, Konogaki H. Seed:Physiology of Development, Germination and Dormancy, 3rd edn. New York: Springer, 2013.
[2] Sato H, Köhler C. Genomic imprinting regulates establishment and release of seed dormancy. Curr Opin Plant Biol, 2022, 69: 102264.
doi: 10.1016/j.pbi.2022.102264
[3] Ashikawa I, Mori M, Nakamura S, Abe F A. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res, 2014, 23: 621-629.
doi: 10.1007/s11248-014-9800-5 pmid: 24752830
[4] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970
[5] Nonogaki H. Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol, 2019, 61: 541-563.
doi: 10.1111/jipb.12762
[6] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[7] Iwasaki M, Penfield S, Lopez-Molina L. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu Rev Plant Biol, 2022, 73: 355-378.
doi: 10.1146/annurev-arplant-102820-090750 pmid: 35138879
[8] Sohn S I, Pandian S, Kumar T S, Zoclanclounon Y A B, Muthuramalingam P, Shilpha J, Satish L, Ramesh M. Seed dormancy and pre-harvest sprouting in rice—an updated overview. Int J Mol Sci, 2021, 22: 11804.
doi: 10.3390/ijms222111804
[9] Nikolaeva M G, Rasumova M V, Gladkova V N. Reference Book on Dormant Seed Germination. Leningrad: Nauka, 1985.
[10] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2004, 14: 1-16.
doi: 10.1079/SSR2003150
[11] Baskin J M, Baskin C C. Seeds:Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edn. Amsterdam: Academic Press, 2014.
[12] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523.
doi: 10.1111/j.1469-8137.2006.01787.x pmid: 16866955
[13] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15: 281-307.
doi: 10.1079/SSR2005218
[14] Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J J. Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012, 35: 1769-1786.
doi: 10.1111/pce.2012.35.issue-10
[15] Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci, 2021, 22: 5069.
doi: 10.3390/ijms22105069
[16] Matilla A J. Seed dormancy—molecular control of its induction and alleviation. Plants, 2020, 9: 1402.
doi: 10.3390/plants9101402
[17] Carrillo-Barral N, Rodríguez-Gacio M C, Matilla A J. Delay of germination-1 (DOG1): a key to understanding seed dormancy. Plants, 2020, 9: 480.
doi: 10.3390/plants9040480
[18] Nonogaki H. A repressor complex silencing ABA signaling in seeds? J Exp Bot, 2020, 71: 2847-2853.
doi: 10.1093/jxb/eraa062 pmid: 32004374
[19] Guan S X, Li Y S, Zeng W Q, Lin J W, Zhan H, Han X Y, Zhang X L, Lu X J. A gibberellin, abscisic acid, and DELAY OF GERMINATION 1 interaction network regulates critical developmental transitions in model plant Arabidopsis thaliana: a review. Appl Ecol Environ Res, 2021, 19: 4699-4720.
doi: 10.15666/aeer
[20] Nelson S K, Kanno Y, Seo M, Steber C M. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. Front Plant Sci, 2023, 14: 1145414.
[21] Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams S R, Kamiya Y, Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol, 2010, 51: 1988-2001.
doi: 10.1093/pcp/pcq158 pmid: 20959378
[22] Liu S J, Xu H H, Wang W Q, Li N, Wang W P, Møller I M, Song S Q. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol Plant, 2015, 154: 142-161.
[23] Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q. Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul, 2012, 66: 191-202.
doi: 10.1007/s10725-011-9643-5
[24] 邓志军, 宋松泉. ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用. 云南植物研究, 2008, 30: 440-446.
Deng Z J, Song S Q. Inhibitory effect of ABA on seed germination of Dalbergia fusca and antagonism of other phytohormones to ABA. Acta Bot Yunnanica, 2008, 30: 440-446 (in English with Chinese abstract).
[25] Xu F, Tang J U, Wang S X, Cheng X, Wang H R, Ou S J, Gao S P, Li B S, Qian Y W, Gao C X, Chu C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet, 2022, 54: 1972-1982.
doi: 10.1038/s41588-022-01240-7 pmid: 36471073
[26] Liu A, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One, 2013, 8: e56570.
doi: 10.1371/journal.pone.0056570
[27] Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 2007, 19: 32-45.
doi: 10.1105/tpc.106.044602 pmid: 17220201
[28] Ariizumi T, Hauvermale A L, Nelson S K, Hanada A, Yamaguchi S, Steber C M. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol, 2013, 162: 2125-2139.
doi: 10.1104/pp.113.219451 pmid: 23818171
[29] Deng Z J, Cheng H Y, Song S Q. Effects of temperature, scarification, dry storage, stratification, phytohormone and light on dormancy-breaking and germination of Cotinus coggygria var. cinerea (Anacardiaceae) seeds. Seed Sci Technol, 2010, 38: 572-584.
doi: 10.15258/sst
[30] Chen H H, Tong J H, Fu W, Liang Z W, Ruan J X, Yu Y G, Song X, Yuan L B, Xiao L T, Liu J, Cui Y H, Huang S Z, Li C L. The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiol, 2020, 184: 1969-1978.
doi: 10.1104/pp.20.01255 pmid: 33037128
[31] Hu Q, Lin C, Guan Y, Sheteiwy M S, Hu W, Hu J. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Sci Rep, 2017, 7: 5295.
doi: 10.1038/s41598-017-04104-x
[32] Steinbach H S, Benech-Arnold R L, Sanchez R A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol, 1997, 113: 149-154.
pmid: 12223597
[33] Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa N K, Lopez-Molina L. Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA signaling for the control of early postgermination growth in Arabidopsis thaliana. Plant Cell Physiol, 2010, 51: 239-251.
[34] Penfield S, Gilday A D, Halliday K J, Graham I A. DELLA- mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol, 2006, 16: 2366-2370.
doi: 10.1016/j.cub.2006.10.057 pmid: 17141619
[35] Nonogaki H. ABA responses during seed development and germination. Adv Bot Res, 2019, 92: 171-217.
doi: 10.1016/bs.abr.2019.04.005
[36] 宋松泉, 刘军, 徐恒恒, 刘旭, 黄荟. 脱落酸代谢与信号传递及其调控种子休眠与萌发的分子机制. 中国农业科学, 2020, 53: 857-873.
doi: 10.3864/j.issn.0578-1752.2020.05.001
Song S Q, Liu J, Xu H H, Liu X, Huang H. ABA metabolism and signaling and their molecular mechanism regulating seed dormancy and germination. Sci Agric Sin, 2020, 53: 857-873. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.05.001
[37] Lim J, Lim C W, Lee S C. Core components of abscisic acid signaling and their post-translation modification. Front Plant Sci, 2022, 13: 895698.
doi: 10.3389/fpls.2022.895698
[38] Liu X, Hou X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci, 2018, 9: 251.
doi: 10.3389/fpls.2018.00251 pmid: 29535756
[39] Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An updated overview on the regulation of seed germination. Plants, 2020, 9: 703.
doi: 10.3390/plants9060703
[40] Nelson S K, Steber C M. Gibberellin hormone signal perception:Down-regulating DELLA repressors of plant growth and development. In: HeddenP, ThomasS G, Annual Plant Reviews, Volume 49: The Gibberellins. Ltd,eds. Oxford: John Wiley & Sons, 2016. pp 153-187.
[41] 宋松泉, 刘军, 黄荟, 伍贤进, 徐恒恒, 张琪, 李秀梅, 梁娟. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制. 中国科学, 2020, 50: 599-615.
Song S Q, Liu J, Huang H, Wu X J, Xu H H, Zhang Q, Li X M, Liang J. Gibberellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy. Sci Sin Vitae, 2020, 50: 599-615. (in Chinese with English abstract)
doi: 10.1360/SSV-2019-0289
[42] McGinty E M, Murphy K M, Hauvermale A L. Seed dormancy and preharvest sprouting in quinoa (Chenopodium quinoa Willd). Plants, 2021, 10: 458.
doi: 10.3390/plants10030458
[43] Hauvermale A L, Tuttle K M, Takebayashi Y, Seo M, Steber C M. Loss of Arabidopsis thaliana seed dormancy is associated with increased accumulation of the GID1 GA hormone receptors. Plant Cell Physiol, 2015, 56: 1773-1785.
doi: 10.1093/pcp/pcv084 pmid: 26136598
[44] Tuttle K M, Martinez S A, Schramm E C, Takebayashi Y, Seo M, Steber C M. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum L. Seed Sci Res, 2015, 25: 179-193.
doi: 10.1017/S0960258515000057
[45] Patwa N, Penning B W. Environmental impact on cereal crop grain damage from preharvest sprouting and late maturity α-amylase. In: PatwaN, PenningB W,eds. Sustainable Agriculture in the Era of Climate Change, Cham, Switzerland: Springer, 2020. pp 23-41.
[46] Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell, 2008, 20: 2729-2745.
doi: 10.1105/tpc.108.061515 pmid: 18941053
[47] Lee K P, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA, 2010, 107: 19108-19113.
doi: 10.1073/pnas.1012896107
[48] Kendall S L, Hellwege A, Marriot P, Whalley C, Graham I A, Penfifield S. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell, 2011, 23: 2568-2580.
doi: 10.1105/tpc.111.087643
[49] Tognacca R S, Botto J F. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. Plant Commun, 2021, 2: 100169.
doi: 10.1016/j.xplc.2021.100169
[50] Chiang G C K, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe W J J, Donohue K, De Meaux J. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol, 2011, 20: 3336-3349.
[51] Née G, Xiang Y, Soppe W J J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774
[52] Yatusevich R, Fedak H, Ciesielski A, Krzyczmonik K, Kulik A, Dobrowolska G, Swiezewski S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep, 2017, 18: 2186-2196.
doi: 10.15252/embr.201744862 pmid: 29030481
[53] Buijs G, Kodde J, Groot S P C, Bentsink L. Seed dormancy release accelerated by elevated partial pressure of oxygen is associated with DOG loci. J Exp Bot, 2018, 69: 3601-3608.
doi: 10.1093/jxb/ery156 pmid: 29701795
[54] Nakabayashi K, Bartsch M, Ding J, Soppe W J J. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLoS Genet, 2015, 11: e1005737.
doi: 10.1371/journal.pgen.1005737
[55] Nonogaki H. Seed biology updates-highlights and new discoveries in seed dormancy and germination research. Front Plant Sci, 2017, 8: 524.
[56] Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol, 2016, 170: 947-955.
doi: 10.1104/pp.15.01483
[57] Graeber K, Voegele A, Büttner-Mainik A, Sperber K, Mummenhoff K, Leubner-Metzger G. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium DELAY OF GERMINATION 1genes. Plant Physiol, 2013, 161: 1903-1917.
doi: 10.1104/pp.112.213298 pmid: 23426197
[58] Szakonyi D, Duque P. Alternative splicing as a regulator of early plant development. Front Plant Sci, 2018, 19: 1174.
[59] Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe W J J. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds. Plant Cell, 2012, 24: 2826-2838.
doi: 10.1105/tpc.112.100214
[60] Ashikawa A, Abe F, Nakamura S.DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in Arabidopsis. Plant Sci, 2013, 208: 1-9.
[61] Carrillo-Barral N, Matilla A J, García-Ramas C, Rodríguez-Gacio M C. ABA-stimulated SoDOG1expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds. Physiol Plant, 2015, 155: 457-471.
doi: 10.1111/ppl.12352 pmid: 26046653
[62] Rikiishi K, Maekawa M. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.). PLoS One, 2014, 9: e107618.
doi: 10.1371/journal.pone.0107618
[63] 张洋洋. 水稻DOG1-like基因克隆、表达分析与功能预测. 中国科学院大学硕士学位论文, 北京, 2016.
Zhang Y Y. Cloning, Expression Analysis and Functional Prediction of DOG1-like Genes in Rice. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2016.
[64] Née G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe W J J. DELAY OF GERMINATION 1 requires PP2C phosphatases of the ABA signaling pathway to control seed dormancy. Nat Commun, 2017, 8: 72.
doi: 10.1038/s41467-017-00113-6
[65] Nishimura N, Tsuchiya W, Moresco J J, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder J I, Yates J R, Hirayama T, Yamazaki T. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat Commun, 2018, 9: 2132.
doi: 10.1038/s41467-018-04437-9 pmid: 29875377
[66] Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after- ripening. Plant Cell, 2011, 23: 2196-2208.
doi: 10.1105/tpc.111.086694
[67] Bewley J D, Nonogaki H. Seed maturation and germination. In: BewleyJ D, NonogakiH, Reference Module in Life Sciences. North York, ON,eds. Canada: Elsevier, 2017.
[68] Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1genes. Plant Mol Biol, 2010, 73: 67-87.
doi: 10.1007/s11103-009-9583-x pmid: 20013031
[69] Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. The AFL subfamily of B3 transcription factors: Evolution and function in angiosperm seeds. J Exp Bot, 2017, 68: 871-880.
doi: 10.1093/jxb/erw458 pmid: 28007955
[70] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Muñoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710-E6719.
[71] Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family—an update. Curr Opin Plant Biol, 2018, 45: 36-49.
doi: S1369-5266(17)30215-7 pmid: 29860175
[72] Bryant F N, Hudges D, Hassani-Pak K, Eastmond P J. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 trans- activates DELAY OF GERMINATION 1 to establish primary seed dormancy in Arabidopsis. Plant Cell, 2019, 31: 1276-1288.
[73] Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Lgnatz M, Sperber K, Voegele A, de Jong H, Urbanová T, Strnad M, Leubner-Metzger G. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci USA, 2014, 111: E3571-E3580.
[74] Bentsink L, Jowett J, Hanhart C J, Koornneef M.Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 17042-17047.
[75] Zhao M, Yang S, Liu X, Wu K. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front Plant Sci, 2015, 6: 159.
[76] Dekkers B J, He H, Hanson J, Willems L A, Jamar D C, Cueff G, Rajjou L, Hilhorst H W, Bentsink L. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J, 2016, 85: 451-465.
doi: 10.1111/tpj.2016.85.issue-4
[77] Li X, Chen T, Li Y, Wang Z, Cao H, Chen F, Li Y, Soppe W J J, Li W, Liu Y. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION 1 expression. Plant Cell, 2019, 31: 832-847.
doi: 10.1105/tpc.18.00449
[78] Yamamoto A, Kagaya Y, Usui H, Hobo T, Takeda S, Hattori T. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis. Plant Cell Physiol, 2010, 51: 2031-2046.
doi: 10.1093/pcp/pcq162 pmid: 21045071
[79] Probst A V, Mittelsten S O. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol, 2015, 27: 8-16.
doi: 10.1016/j.pbi.2015.05.011 pmid: 26042538
[80] Kim J-M, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci, 2015, 6: 114.
[81] Whittle C A, Otto S P, Johnston M O, Krochko J E. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany, 2009, 87: 650-657.
[82] Angel A, Song J, Dean C, Howard M. A polycomb-based switch underlying quantitative epigenetic memory. Nature, 2011, 476: 105-108.
doi: 10.1038/nature10241
[83] Finch-Savage W E, Footitt S. Regulation of seed dormancy cycling in seasonal field environments. In: Finch-SavageW E, FootittS,eds. Advances in Plant Dormancy. Cham, Switzerland: Springer, 2015. pp 35-47.
[84] Barski A, Cuddapah S, Cui K, Roh T-Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129: 823-837.
doi: 10.1016/j.cell.2007.05.009 pmid: 17512414
[85] Soria G, Polo S E, Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell, 2012, 46: 722-734.
doi: 10.1016/j.molcel.2012.06.002 pmid: 22749398
[86] Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S, Wang J, Ahmad R, Liu B, Xu Z Y. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. New Phytol, 2018, 217: 1582-1597.
doi: 10.1111/nph.14933 pmid: 29250818
[87] Wolny E, Braszewska-Zalewska A, Kroczek D, Hasterok R. Histone H3 and H4 acetylation patterns are more dynamic than those of DNA methylation in Brachypodium distachyon embryos during seed maturation and germination. Protoplasma, 2017, 254: 2045-2052.
doi: 10.1007/s00709-017-1088-x
[88] Footitt S, Müller K, Kermode A R, Finch-Savage W E. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Plant J, 2015, 81: 413-425.
doi: 10.1111/tpj.2015.81.issue-3
[89] Li H-C, Chuang K, Henderson J T, Rider S D, Bai Y, Zhang H, Fountain M, Gerber J, Ogas J. PICKLE acts during germination to repress expression of embryonic traits. Plant J, 2005, 44: 1010-1022.
doi: 10.1111/tpj.2005.44.issue-6
[90] Zhang H, Rider S D, Henderson J T, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg H J, Romero-Severson J, Muir W M, Ogas J. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem, 2008, 283: 22637-22648.
doi: 10.1074/jbc.M802129200 pmid: 18539592
[91] Tai H H, Tai G C C, Beardmore T. Dynamic histone acetylation of late embryonic genes during seed germination. Plant Mol Biol, 2005, 59: 909-925.
doi: 10.1007/s11103-005-2081-x pmid: 16307366
[92] Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149-161.
[93] Klupczyńska E A, Pawłowski T A. Regulation of seed dormancy and germination mechanisms in a changing environment. Int J Mol Sci, 2021, 22: 1357.
doi: 10.3390/ijms22031357
[94] Batista R A, Köhler C. Genomic imprinting in plants—revisiting existing models. Gene Dev, 2020, 34: 24-36.
doi: 10.1101/gad.332924.119 pmid: 31896690
[95] Rodrigues J A, Zilberman D. Evolution and function of genomic imprinting in plants. Genes Dev, 2015, 29: 2517-2531.
doi: 10.1101/gad.269902.115
[96] Barlow D P. Gametic imprinting in mammals. Science, 1995, 270: 1610-1613.
doi: 10.1126/science.270.5242.1610 pmid: 7502071
[97] Zhang H, Lang Z, Zhu J K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 2018, 19: 489-506.
doi: 10.1038/s41580-018-0016-z
[98] Penterman J, Zilberman D, Huh J H, Ballinger T, Henikoff S, Fischer R L. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA, 2007, 104: 6752-6757.
doi: 10.1073/pnas.0701861104 pmid: 17409185
[99] Park J S, Frost J M, Park K, Ohr H, Park G T, Kim S, Eom H, Lee I, Brooks J S, Fischer R L, Chol Y. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2017, 114: 2078-2083.
[100] Moreno-Romero J, Jiang H, Santos-González J, Köhler C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J, 2016, 35: 1298-1311.
doi: 10.15252/embj.201593534 pmid: 27113256
[101] Pignatta D, Erdmann R M, Scheer E, Picard C L, Bell G W, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife, 2014, 3: e03198.
doi: 10.7554/eLife.03198
[102] Jullien P E, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18: 1360-1372.
doi: 10.1105/tpc.106.041178
[103] Yan W, Chen D, Smaczniak C, Engelhorn J, Liu H, Yang W, Graf A, Carles C C, Zhou D X, Kaufmann K. Dynamic and spatial restriction of polycomb activity by plant histone demethylases. Nat Plants, 2018, 4: 681-689.
doi: 10.1038/s41477-018-0219-5 pmid: 30104650
[104] Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife, 2021, 10: e64593.
doi: 10.7554/eLife.64593
[105] Chen W, Wang W, Lyu Y, Wu Y, Huang P, Hu S, Wei X, Jiao G, Sheng Z, Tang S, Shao G, Luo J. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J, 2020, 9: 68-78.
doi: 10.1016/j.cj.2020.06.005
[106] Piskurewicz U, Iwasaki M, Susaki D, Megies C, Kinoshita T, Lopez-Molina L. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana. eLife, 2016, 5: e19573.
doi: 10.7554/eLife.19573
[107] Hsieh T F, Shin J, Uzawa R, Silva P, Cohen S, Bauer M J, Hashimoto M, Kirkbride R C, Harada J J, Zilberman D, Fischer R L. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA, 2011, 108: 1755-1762.
doi: 10.1073/pnas.1019273108
[108] Vu T M, Nakamura M, Calarco J P, Susaki D, Lim P Q, Kinoshita T, Higashiyama T, Martienssen R A, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development, 2013, 140: 2953-2960.
[109] Martínez G, Panda K, Köhler C, Slotkin R K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants, 2016, 2: 16030.
doi: 10.1038/nplants.2016.30 pmid: 27249563
[110] Calarco J P, Borges F, Donoghue M T, Van Ex F, Jullien P E, Lopes T, Gardner R, Berger F, Feijó J A, Becker J D, Martienssen R A. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 2012, 151: 194-205.
doi: 10.1016/j.cell.2012.09.001 pmid: 23000270
[111] Kim M Y, Ono A, Scholten S, Kinoshita T, Zilberman D, Okamoto T, Fischer R L. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. Proc Natl Acad Sci USA, 2019, 116: 9652-9657.
doi: 10.1073/pnas.1821435116 pmid: 31000601
[112] Brinkman A B, Gu H, Bartels S J J, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg H G. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res, 2012, 22: 1128-1138.
doi: 10.1101/gr.133728.111 pmid: 22466170
[113] Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet, 2010, 6: e1001152.
doi: 10.1371/journal.pgen.1001152
[114] Moreno-Romero J, Del Toro-De León G, Yadav V K, Santos-González J, Köhler C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol, 2019, 20: 41.
doi: 10.1186/s13059-019-1652-0 pmid: 30791924
[115] Zhang M, Xie S J, Dong X M, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G, Chen Z, Sun S, Hauck A, Jin W, Lai J. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res, 2014, 24: 167-176.
doi: 10.1101/gr.155879.113 pmid: 24131563
[116] Ingouff M, Rademacher S, Holec S, Soljic L, Xin N, Readshaw A, Foo S H, Lahouze B, Sprunck S, Berger F. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol, 2010, 20: 2137-2143.
[117] Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol, 2020, 22: 621-629.
doi: 10.1038/s41556-020-0515-y pmid: 32393884
[118] Batista R A, Moreno-Romero J, Qiu Y, van Boven J, SantosGonzález J, Figueiredo D D, Köhler C. The MADS-box transcription factor PHERES 1 controls imprinting in the endosperm by binding to domesticated transposons. eLife, 2019, 8: e50541.
doi: 10.7554/eLife.50541
[119] Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman C S, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009, 21: 3803-3822.
[120] Iwasaki M, Hyvärinen L, Piskurewicz U, Lopez-Molina L. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy. eLife, 2019, 8: e37434.
doi: 10.7554/eLife.37434
[121] Cuerda-Gil D, Slotkin R K. Non-canonical RNA-directed DNA methylation. Nat Plants, 2016, 2: 16163.
doi: 10.1038/nplants.2016.163 pmid: 27808230
[122] Qiu Q, Mei H, Deng X, He K, Wu B, Yao Q, Zhang J, Lu F, Ma J, Cao X. DNA methylation repels targeting of Arabidopsis REF6. Nat Commun, 2019, 10: 2063.
doi: 10.1038/s41467-019-10026-1 pmid: 31048693
[123] Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J, 2008, 54: 608-620.
doi: 10.1111/tpj.2008.54.issue-4
[124] Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe W J J, Li Y, Liu Y. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol, 2012, 193: 605-616.
doi: 10.1111/j.1469-8137.2011.03969.x pmid: 22122546
[125] Rehmani M S, Aziz U, Xian B, Shu K. Seed dormancy and longevity: A mutual dependence or a trade-off? Plant Cell Physiol, 2022, 63: 1029-1037.
doi: 10.1093/pcp/pcac069
[126] Holdsworth M J, Bentsink L, Soppe W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol, 2008, 179: 33-54.
doi: 10.1111/j.1469-8137.2008.02437.x pmid: 18422904
[127] Zhao P, Zhou X, Shen K, Liu Z, Cheng T, Liu D, Cheng Y, Peng X, Sun M X. Two-step maternal-to-zygotic transition with two phase parental genome contributions. Dev Cell, 2019, 49: 882-893.
doi: S1534-5807(19)30286-2 pmid: 31080059
[1] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[2] 韩贝, 孙思敏, 孙伟男, 杨细燕, 张献龙. 植物体细胞胚胎发生的分子机制[J]. 作物学报, 2023, 49(2): 299-309.
[3] 陈赛华, 仲伟杰, 薛明. 植物有性生殖对高温胁迫的响应机制[J]. 作物学报, 2023, 49(12): 3143-3153.
[4] 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716.
[5] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[6] 孙爱伶,伍洪铭,陈高明,张天雨,曹鹏辉,刘世家,江玲,万建民. 控制普通野生稻种子休眠性QTL的定位[J]. 作物学报, 2018, 44(01): 15-23.
[7] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[8] 兰海,冷亦峰,周树峰,刘坚,荣廷昭. 玉米种子休眠相关蛋白的鉴定与分析[J]. 作物学报, 2014, 40(10): 1865-1871.
[9] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[10] 蔡铁,徐海成,尹燕枰,杨卫兵,彭佃亮,倪英丽,徐彩龙,杨东清,王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制[J]. 作物学报, 2013, 39(10): 1835-1842.
[11] 李先恩,孙鹏,祁建军,周丽莉,王绍华. 地黄栽培种与野生种内源激素含量的差异[J]. 作物学报, 2013, 39(07): 1276-1283.
[12] 徐静,王莉,钱前,张光恒. 水稻叶片形态建成分子调控机制研究进展[J]. 作物学报, 2013, 39(05): 767-774.
[13] 井文;江玲;张文伟;翟虎渠;万建民. 杂草稻种子休眠数量性状位点的定位[J]. 作物学报, 2008, 34(05): 737-742.
[14] 兰海;李新海;王凤格;高世斌;曹墨菊;唐祈林;潘光堂;赵久然;荣廷昭. 玉米种子休眠性的QTL定位[J]. 作物学报, 2007, 33(09): 1474-1478.
[15] 张霞;唐文华;张力群. 枯草芽孢杆菌B931防治植物病害和促进植物生长的作用[J]. 作物学报, 2007, 33(02): 236-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .