作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3143-3153.doi: 10.3724/SP.J.1006.2023.32020
• 综述 • 下一篇
CHEN Sai-Hua*(), ZHONG Wei-Jie, XUE Ming
摘要:
极端高温天气频发, 严重威胁农作物的生产。高温胁迫对有性生殖过程的影响与作物减产密切相关, 解析其中的分子机制对于指导作物耐高温遗传改良具有重要意义。然而, 与模式植物拟南芥相比, 目前有关作物有性生殖过程中耐高温的相关研究十分有限。本文从植物有性生殖过程出发, 概述了在减数分裂、花粉绒毡层降解、小孢子发育、花粉管萌发与授精以及籽粒发育等一系列生殖发育过程中响应高温胁迫的分子机制。据此, 我们提出了作物耐高温改良的可行策略, 以期为耐高温品种的遗传改良提供理论依据。
[1] | 王荣, 王遵娅, 高荣, 叶殿秀. 1961-2020年中国区域性高温过程的气候特征及变化趋势. 地球物理学报, 2023, 66: 494-504. |
Wang R, Wang Z Y, Gao R, Ye D X.Climatic characteristics and trends of regional high temperature processes in China during 1961-2020. Chin J Geophys, 2023, 66: 494-504. (in Chinese with English abstract) | |
[2] |
Battisti D S, Naylor R L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 2009, 323: 240-244.
doi: 10.1126/science.1164363 pmid: 19131626 |
[3] |
Zhao C, Liu B, Piao S, Wang X, Lobell D B, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Muller C, Peng S, Penuelas J, Ruane A C, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326-9331.
doi: 10.1073/pnas.1701762114 pmid: 28811375 |
[4] |
凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323-334.
doi: 10.3724/SP.J.1006.2019.82044 |
Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. Research progress on effects of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323-334 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.82044 |
|
[5] |
闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
doi: 10.3864/j.issn.0578-1752.2021.17.004 |
Yan Z H, Liu D R, Jia X C, Yang Q, Chen Y B, Dong P F, Wang Q. Effects of high temperature and drought on tassel development, physiological characteristics and yield of maize during flowering period. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract) | |
[6] |
Lohani N, Singh M B, Bhalla P L. High temperature susceptibility of sexual reproduction in crop plants. J Exp Bot, 2020, 71: 555-568.
doi: 10.1093/jxb/erz426 pmid: 31560053 |
[7] |
Browne R G, Li S F, Iacuone S, Dolferus R, Parish R W. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress. Planta, 2021, 254: 4.
doi: 10.1007/s00425-021-03656-7 pmid: 34131818 |
[8] |
Kakani V G, Reddy K R, Koti S, Wallace T P, Prasad P V, Reddy V R, Zhao D. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot, 2005, 96: 59-67.
doi: 10.1093/aob/mci149 |
[9] |
Minamiyama Y, Takemura S, Ichikawa H. Food additive-induced oxidative stress in rat male reproductive organs and hippocampus. Arch Biochem Biophys, 2021, 701: 108810.
doi: 10.1016/j.abb.2021.108810 |
[10] |
Brauner E V, Hansen A M, Doherty D A, Dickinson J E, Handelsman D J, Hickey M, Skakkebaek N E, Juul A, Hart R. The association between in-utero exposure to stressful life events during pregnancy and male reproductive function in a cohort of 20-year-old offspring: the Raine Study. Hum Reprod, 2019, 34: 1345-1355.
doi: 10.1093/humrep/dez070 |
[11] |
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ, 2014, 37: 1-18.
doi: 10.1111/pce.2014.37.issue-1 |
[12] |
Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol, 2009, 50: 1911-1922.
doi: 10.1093/pcp/pcp135 pmid: 19808807 |
[13] |
De Storme N, Geelen D. High temperatures alter cross-over distribution and induce male meiotic restitution in Arabidopsis thaliana. Commun Biol, 2020, 3: 187.
doi: 10.1038/s42003-020-0897-1 pmid: 32327690 |
[14] |
Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi I E, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. Plant Physiol, 2021, 185: 1783-1797.
doi: 10.1093/plphys/kiab012 pmid: 33793950 |
[15] |
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi I E, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiol, 2022, 188: 1210-1228.
doi: 10.1093/plphys/kiab563 |
[16] |
Lei X, Ning Y, Eid E I, Yang K, Chen C, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. Plant Signal Behav, 2020, 15: 1746985.
doi: 10.1080/15592324.2020.1746985 |
[17] |
Zhao J, Gui X, Ren Z, Fu H, Yang C, Wang W, Liu Q, Zhang M, Wang C, Schnittger A, Liu B. ATM-mediated double-strand break repair is required for meiotic genome stability at high temperature. Plant J, 2023, 114: 403-423.
doi: 10.1111/tpj.v114.2 |
[18] |
Higgins J D, Perry R M, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong S J, Franklin F C. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell, 2012, 24: 4096-4109.
doi: 10.1105/tpc.112.102483 |
[19] |
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ, 2014, 37: 1-18.
doi: 10.1111/pce.2014.37.issue-1 |
[20] |
Li Y, Huang Y, Sun H, Wang T, Ru W, Pan L, Zhao X, Dong Z, Huang W, Jin W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. Plant Cell, 2022, 34: 3702-3717.
doi: 10.1093/plcell/koac184 |
[21] |
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan Y L, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. New Phytol, 2022, 236: 2172-2188.
doi: 10.1111/nph.18490 pmid: 36104957 |
[22] |
Zhao Q, Zhou L, Liu J, Du X, Asad M A, Huang F, Pan G, Cheng F. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiol Biochem, 2018, 122: 90-101.
doi: 10.1016/j.plaphy.2017.11.009 |
[23] |
Zhao Q, Zhou L, Liu J, Cao Z, Du X, Huang F, Pan G, Cheng F. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep, 2018, 37: 741-757.
doi: 10.1007/s00299-018-2264-y pmid: 29464319 |
[24] |
Wang J, Li D, Shang F, Kang X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep, 2017, 7: 5281.
doi: 10.1038/s41598-017-05661-x pmid: 28706219 |
[25] |
Zhou Q, Cheng X, Kong B, Zhao Y, Li Z, Sang Y, Wu J, Zhang P. Heat shock-induced failure of meiosis I to meiosis II transition leads to 2n pollen formation in a woody plant. Plant Physiol, 2022, 189: 2110-2127.
doi: 10.1093/plphys/kiac219 pmid: 35567496 |
[26] |
Hedhly A, Hormaza J I, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci, 2009, 14: 30-36.
doi: 10.1016/j.tplants.2008.11.001 pmid: 19062328 |
[27] |
Phan H A, Iacuone S, Li S F, Parish R W. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell, 2011, 23: 2209-2224.
doi: 10.1105/tpc.110.082651 |
[28] |
Phan H A, Li S F, Parish R W. MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol, 2012, 78: 171-183.
doi: 10.1007/s11103-011-9855-0 pmid: 22086333 |
[29] |
Dundar G, Shao Z, Higashitani N, Kikuta M, Izumi M, Higashitani A. Autophagy mitigates high-temperature injury in pollen development of Arabidopsis thaliana. Dev Biol, 2019, 456: 190-200.
doi: 10.1016/j.ydbio.2019.08.018 |
[30] |
Li Y, Li Y, Chen Y, Wang M, Yang J, Zhang X, Zhu L, Kong J, Min L. Genome-wide identification, evolutionary estimation and functional characterization of two cotton CKI gene types. BMC Plant Biol, 2021, 21: 229.
doi: 10.1186/s12870-021-02990-y |
[31] |
Min L, Zhu L, Tu L, Deng F, Yuan D, Zhang X. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75: 823-835.
doi: 10.1111/tpj.2013.75.issue-5 |
[32] |
Li Y, Li Y, Su Q, Wu Y, Zhang R, Li Y, Ma Y, Ma H, Guo X, Zhu L, Min L, Zhang X. High temperature induces male sterility via MYB66-MYB4-Casein kinase I signaling in cotton. Plant Physiol, 2022, 189: 2091-2109.
doi: 10.1093/plphys/kiac213 |
[33] |
Li B, Gao K, Ren H, Tang W. Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol, 2018, 60: 757-779.
doi: 10.1111/jipb.12701 |
[34] |
Zhang S S, Yang H, Ding L, Song Z T, Ma H, Chang F, Liu J X. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis. Plant Cell, 2017, 29: 1007-1023.
doi: 10.1105/tpc.16.00916 |
[35] |
Gao J, Wang M J, Wang J J, Lu H P, Liu J X. bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. aBIOTECH, 2022, 3: 1-11.
doi: 10.1007/s42994-021-00062-1 |
[36] |
Deng Y, Srivastava R, Quilichini T D, Dong H, Bao Y, Horner H T, Howell S H. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. Plant J, 2016, 88: 193-204.
doi: 10.1111/tpj.2016.88.issue-2 |
[37] |
Xie D L, Huang H M, Zhou C Y, Liu C X, Kanwar M K, Qi Z Y, Zhou J. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity, protein repair, and degradation in Solanum lycopersicum L. Hortic Res, 2022, 9: uhac163.
doi: 10.1093/hr/uhac163 |
[38] |
Fragkostefanakis S, Mesihovic A, Simm S, Paupiere M J, Hu Y, Paul P, Mishra S K, Tschiersch B, Theres K, Bovy A, Schleiff E, Scharf K D. HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol, 2016, 170: 2461-2477.
doi: 10.1104/pp.15.01913 pmid: 26917685 |
[39] |
Renak D, Gibalova A, Solcova K, Honys D. A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein. Plant Cell Environ, 2014, 37: 670-683.
doi: 10.1111/pce.2014.37.issue-3 |
[40] | Lin S, Liu Z, Sun S, Xue F, Li H, Tursun A, Cao L, Zhang L, Wilson Z A, Zhang D, Liang W. Rice HEAT SHOCK PROTEIN60-3B maintains male fertility under high temperature by starch granule biogenesis. Plant Physiol, 2023: kiad136. |
[41] | Firon N, Pressman E, Meir S, Khoury R, Altahan L. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants, 2012, 2012: pls24. |
[42] |
Jegadeesan S, Beery A, Altahan L, Meir S, Pressman E, Firon N. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod, 2018, 31: 367-383.
doi: 10.1007/s00497-018-0339-0 pmid: 29948007 |
[43] |
Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA, 2010, 107: 8569-8574.
doi: 10.1073/pnas.1000869107 pmid: 20421476 |
[44] |
Ma Y, Min L, Wang M, Wang C, Zhao Y, Li Y, Fang Q, Wu Y, Xie S, Ding Y, Su X, Hu Q, Zhang Q, Li X, Zhang X. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell, 2018, 30: 1387-1403.
doi: 10.1105/tpc.18.00074 |
[45] |
Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X. Sugar and auxin signaling pathways respond to high- temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164: 1293-1308.
doi: 10.1104/pp.113.232314 |
[46] |
Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J, 2017, 91: 977-994.
doi: 10.1111/tpj.2017.91.issue-6 |
[47] |
Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss Y G, Maathuis F J, Goloubinoff P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell, 2009, 21: 2829-2843.
doi: 10.1105/tpc.108.065318 |
[48] |
Tunc-Ozdemir M, Tang C, Ishka M R, Brown E, Groves N R, Myers C T, Rato C, Poulsen L R, Mcdowell S, Miller G, Mittler R, Harper J F. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol, 2013, 161: 1010-1020.
doi: 10.1104/pp.112.206888 pmid: 23370720 |
[49] |
Rahmati I M, Brown E, Weigand C, Tillett R L, Schlauch K A, Miller G, Harper J F. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat- sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics, 2018, 19: 549.
doi: 10.1186/s12864-018-4930-4 pmid: 30041596 |
[50] |
Yang K Z, Xia C, Liu X L, Dou X Y, Wang W, Chen L Q, Zhang X Q, Xie L F, He L, Ma X, Ye D. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J, 2009, 57: 870-882.
doi: 10.1111/tpj.2009.57.issue-5 |
[51] |
Endo S, Shinohara H, Matsubayashi Y, Fukuda H. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Curr Biol, 2013, 23: 1670-1676.
doi: 10.1016/j.cub.2013.06.060 |
[52] | Muhlemann J K, Younts T, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Natl Acad Sci USA, 2018, 115: E11188-E11197. |
[53] |
Chan A, Carianopol C, Tsai A Y, Varatharajah K, Chiu R S, Gazzarrini S. SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. J Exp Bot, 2017, 68: 4219-4231.
doi: 10.1093/jxb/erx233 |
[54] | Talbert P B, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 2010, 11: 264-275. |
[55] |
Kumar S V, Wigge P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 2010, 140: 136-147.
doi: 10.1016/j.cell.2009.11.006 |
[56] |
Boden S A, Kavanova M, Finnegan E J, Wigge P A. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol, 2013, 14: R65.
doi: 10.1186/gb-2013-14-6-r65 |
[57] |
Cao Z, Tang H, Cai Y, Zeng B, Zhao J, Tang X, Lu M, Wang H, Zhu X, Wu X, Yuan L, Wan J. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage. Plant Biotechnol J, 2022, 20: 1591-1605.
doi: 10.1111/pbi.v20.8 |
[58] |
Li X M, Chao D Y, Wu Y, Huang X, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. Natural alleles of a proteasome alpha2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet, 2015, 47: 827-833.
doi: 10.1038/ng.3305 |
[59] |
Kan Y, Mu X R, Zhang H, Gao J, Shan J X, Ye W W, Lin H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat Plants, 2022, 8: 53-67.
doi: 10.1038/s41477-021-01039-0 pmid: 34992240 |
[60] |
Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B, Mu X R, Cao Y J, Yu J J, Lin Y, Lin H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376: 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289 |
[61] |
Nieto-Sotelo J, Kannan K B, Martinez L M, Segal C. Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene, 1999, 230: 187-195.
pmid: 10216257 |
[1] | 宋松泉, 唐翠芳, 雷华平, 姜孝成, 王伟清, 程红焱. 种子休眠与萌发调控的研究进展[J]. 作物学报, 2024, 50(1): 1-15. |
[2] | 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186. |
[3] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[4] | 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[5] | 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361. |
[6] | 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757. |
[7] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[8] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[9] | 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716. |
[10] | 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350. |
[11] | 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870. |
[12] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[13] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[14] | 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143. |
[15] | 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517-2532. |
|