欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2860-2869.doi: 10.3724/SP.J.1006.2024.44005

• 耕作栽培·生理生化 • 上一篇    下一篇

三七种植适宜区的分布及其对气候变化的响应

王露1(), 赵炯超1, 王艺璇1, 米艳华2, 张宁怡1, 赵明宇1, 褚庆全1,*()   

  1. 1中国农业大学农学院, 北京 100193
    2云南省农业科学院质量标准与检测技术研究所, 云南昆明 650205
  • 收稿日期:2024-01-07 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-17
  • 通讯作者: *褚庆全, E-mail: cauchu@cau.edu.cn
  • 作者简介:E-mail: Rachel_9077@cau.edu.cn
  • 基金资助:
    云南省重大科技专项项目(202202AE090029);中国农业大学大学生创新训练项目(X2022100190356)

Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change

WANG Lu1(), ZHAO Jiong-Chao1, WANG Yi-Xuan1, MI Yan-Hua2, ZHANG Ning-Yi1, ZHAO Ming-Yu1, CHU Qing-Quan1,*()   

  1. 1College of Agronomy, China Agricultural University, Beijing 100193, China
    2Institute of Agricultural Quality Standard & Testing Technique, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2024-01-07 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-17
  • Contact: *E-mail: cauchu@cau.edu.cn
  • Supported by:
    Major Science and Technology Projects in Yunnan Province(202202AE090029);College Students Innovation and Training Project of China Agricultural University(X2022100190356)

摘要:

探究气候变化背景下三七种植适宜区的时空变化特征可为三七引种栽培、规模生产以及产业发展提供理论参考。基于云南省131条三七地理分布数据和15个环境变量, 利用MaxEnt模型分析影响三七分布的主导因子, 划分云南省三七种植适宜区, 明确1961—2020年间云南省三七种植适宜区变化特征。研究结果表明: (1) 影响三七分布的主导因子和对应的最适宜区的阈值分别为平均气温日较差(小于10.0℃)、最高气温≥33℃天数(少于5 d)、坡向(北向)、≥10℃年积温(4708.0~5331.9℃ d)、年日照时数(1636.7~1963.3 h)和降水季节性差异(92%~96%)。(2) 三七种植适宜区主要集中在云南省东南部, 包括文山、红河、昆明、玉溪和曲靖等地, 约占云南省国土面积的4.8%。(3) 1961— 2020年间的气候变化提高了云南三七的种植适宜性和适宜区面积, 适宜性提高的区域约占全省的18.1%。(4) 60多年间, 云南省三七最适宜区界限呈向北扩张趋势, 适宜区呈向高海拔、高纬度区域迁移的趋势。本研究对于制定合理的云南省三七产业布局和降低气候变化对三七生产的潜在风险, 以及农业土地资源管理利用提供理论基础和技术支撑。

关键词: 三七, MaxEnt模型, 气候变化, 主导因子, 种植适宜区

Abstract:

Understanding the dynamic spatiotemporal changes in suitable cultivation areas for Panax notoginseng in Yunnan province amid climate change is crucial for guiding its introduction, cultivation, and large-scale industrial development. Utilizing 131 geographical distribution data points of Panax notoginseng in Yunnan province and 15 environmental variables, we employed the MaxEnt model to analyze the primary factors influencing its distribution and to delineate the suitable cultivation areas and their variations from 1961 to 2020. Our analysis identified key factors, including mean daily temperature range (<10.0℃), the number of days with maximum temperature ≥ 33℃ (<5 days), aspect (north-facing slopes), annual accumulation temperature ≥ 10℃ (4708.0-5331.9 ℃ d), annual sunshine duration (1636.7-1963.3 h), and seasonal variation in precipitation (92%-96%). Suitable cultivation areas for Panax notoginseng were primarily concentrated in southeastern Yunnan Province, encompassing Wenshan, Honghe, Kunming, Yuxi, and Qujing, comprising approximately 4.8% of the entire province. Our findings indicate that climate change from 1961 to 2020 has led to an 18.1% expansion in suitable areas for Panax notoginseng cultivation across Yunnan province. Moreover, over the past six decades, there has been a noticeable northward expansion of the optimal boundary for Panax notoginseng, accompanied by an overall improvement in its suitability amid climate fluctuations. This study provides a theoretical framework and technical support for devising a rational industrial layoutfor Panax notoginseng in Yunnan province, thereby mitigating the potential risks posed by climate change to its production and facilitating the effective management and utilization of agricultural land resources.

Key words: Panax notoginseng, MaxEnt model, climate change, dominant factors, cultivation suitability

图1

云南省气象站点和三七的地理分布点 该图基于国家地理信息公共服务平台下载的审图号为GS (2024) 0650号标准地图制作, 底图边界无修改。"

表1

影响三七分布的环境变量及其贡献率"

分类
Type
名称
Description
贡献率
Contribution
参考文献
References
气候
Climate factor
平均气温日较差Mean of daily temperature range (℃) 41.8 [25]
最高气温≥33℃天数Number of days with maximum temperature ≥33℃ (d) 11.4 [23]
年日照时数Annual sunshine duration (h) 6.1 [24]
降水季节性差异Seasonal differences in precipitation (%) 5.8 [25]
4-6月累积降水量Accumulation precipitation from April to June (mm) 4.9 [24]
≥10℃年积温 ≥10℃ annual accumulation temperature (℃ d) 9.2 [24]
土壤
Soil factor
酸碱度pH 0.1 [30-32]
含沙量Percentage sand (%) 1.2
含黏量Percentage clay (%) 1.8
有机碳含量Percentage of organic carbon (%) 1.0
阳离子交换量Cation exchange capacity (cmol kg-1) 0.2
容重Bulk density (kg m-3) 0.3
地形
Topographic
factor
海拔Elevation (m) 5.5 [25]
坡向Aspect 10.5
坡度Slope (°) 0.2

图2

三七种植适宜性评价MaxEnt模型的ROC曲线"

图3

影响三七分布的环境变量刀切图 pH: 土壤酸碱度; BD: 土壤容重; Dem: 海拔; Aspect: 坡向; Slope: 坡度; Sand: 土壤含沙量; Clay: 土壤含黏量; Y_ST: 年日照时数; SOC: 土壤有机碳含量; P_M4_6: 4-6月降水量; CEC: 土壤阳离子交换量; ACT10: ≥10℃年积温; PMCV: 降水季节性差异; DTD: 平均气温日较差; Day33: 最高气温≥33℃天数。"

表2

三七不同适宜性环境因子阈值划分"

分类
Classification
平均气温日较差
Mean of daily temperature range
(℃)
最高气温≥33℃天数
Number of days with maximum temperature ≥33℃ (d)
坡向
Aspect
(°)
≥10℃年积温
≥10℃ annual
accumulation temperature
(℃ d)
年日照时数
Annual
sunshine
duration (h)
降水季节性差异
Seasonal differences
in precipitation
(%)
最适宜 Optimum <10.0 <5.8 <3.4 4708.0-5331.9 1636.7-1963.3 92-96
适宜Suitable <10.3 5.8-6.1 <5.0 4689.1-6239.5 1433.3-2116.7 87-98
次适宜Less suitable <10.9 6.1-36.3 <10.0 4235.3-6258.4 <2156.7 <100
不适宜 Unsuitable >10.9 >36.3 >10.0 <4235.3, >6258.4 >2156.7

图4

1961-2020年三七种植适宜区的空间变化 该图基于国家地理信息公共服务平台下载的审图号为GS (2024) 0650号标准地图制作, 底图边界无修改。a: 1961-1970年; b: 1971-1980年; c: 1981-1990年; d: 1991-2000年; e: 2001-2010年; f: 2011-2020年。"

图5

云南省三七种植适宜性对气候变化的响应 该图基于国家地理信息公共服务平台下载的审图号为GS (2024) 0650号标准地图制作, 底图边界无修改。a: 1961-1990年; b: 1991-2020年; c: 1961-2020年。"

[1] 刘立红, 刘英, 王芬, 刘石磊, 胡会泽, 张文生, 辛文锋. 云南三七产业发展现状及发展建议. 中国现代中药, 2017, 19: 1331-1335.
Liu L H, Liu Y, Wang F, Liu S L, Hu H Z, Zhang W S, Xin W F. The current development situation and suggestion of Panax notoginseng in Yunnan province. Mod Chin Med, 2017, 19: 1331-1335 (in Chinese with English abstract).
[2] 梁晓莲, 刘纤纤, 李文莉, 陈勇, 黄周艳, 刘玟君. 三七总皂苷药理作用及临床应用研究进展. 湖北农业科学, 2021, 60(6): 15-19.
Liang X L, Liu Q Q, Li W L, Chen Y, Huang Z Y, Liu W J. Research progress in pharmacological effects and clinical applications of Panax notoginseng saponins. Hubei Agric Sci, 2021, 60(6): 15-19 (in Chinese with English abstract).
[3] 詹鹏, 韦美膛, 徐波, 韩蕊莲. 基于产业链的我国三七产业发展现状与对策. 北方园艺, 2021, (14): 158-164.
Zhan P, Wei M T, Xu B, Han R L. Research on the development status and countermeasures of China’s Panax notoginseng industry based on the industrial chain. North Hortic, 2021, (14): 158-164 (in Chinese with English abstract).
[4] 云南省中药材产业发展报告.云南农业, 2018, (9): 30-34.
Yunnan province Chinese herbal medicine industry development report. Yunnan Agric, 2018, (9): 30-34 (in Chinese).
[5] 王艳芳, 李戈, 唐玲, 李荣英, 杨春勇. 三七在西双版纳引种适应性试验初报. 中国农学通报, 2013, 29(25): 136-141.
Wang Y F, Li G, Tang L, Li R Y, Yang C Y. Preliminary research on introduction and cultivation adaptability of Panax notoginseng in Xishuangbanna. Chin Agric Sci Bull, 2013, 29(25): 136-141 (in Chinese with English abstract).
[6] Hannah L, Roehrdanz P R, Ikegami M, Shepard A V, Shaw M R, Tabor G, Zhi L, Marquet P A, Hijmans R J. Climate change, wine, and conservation. Proc Natl Acad Sci USA, 2013, 110: 6907-6912.
doi: 10.1073/pnas.1210127110 pmid: 23569231
[7] Hood A, Cechet B, Hossain H, Sheffield K. Options for Victorian agriculture in a “new” climate: pilot study linking climate change and land suitability modelling. Environ Model Softw, 2006, 21: 1280-1289.
[8] Zhang J Q, Su Y R, Wu J S, Liang H B. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput Electron Agric, 2015, 114: 202-211.
[9] Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 1997, 24: 38-49.
[10] 韩湘玲. 作物生态学. 北京: 气象出版社, 1991. pp 35-50.
Han X L. Crop Ecology. Beijing: China Meteorological Press, 1991. pp 35-50 (in Chinese).
[11] Li J B, Bao Y L, Wang Z R, Yang Q, Cui X M. Research progress in diseases of Panax notoginseng. Physiol Mol Plant Pathol 2022, 121: 101878.
[12] Zhao J C, Wang C, Shi X Y, Bo X Z, Li S, Shang M F, Chen F, Chu Q Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric Syst, 2021, 192: 103205.
[13] Shi X Y, Wang C, Zhao J C, Wang K C, Chen F, Chu Q Q. Increasing inconsistency between climate suitability and production of cotton (Gossypium hirsutum L.) in China. Ind Crops Prod, 2021, 171: 113959.
[14] 薄晓智, 石晓宇, 赵炯超, 林倩, 史梦霞, 商蒙非, 褚庆全. 基于MaxEnt模型的中国裸燕麦种植气候适宜性评价. 中国农业大学学报, 2021, 26(9): 1-10.
Bo X Z, Shi X Y, Zhao J C, Lin Q, Shi M X, Shang M F, Chu Q Q. Climatic suitability of naked oat (Avena nuda L.) planting in China based on MaxEnt model. J China Agric Univ, 2021, 26(9): 1-10 (in Chinese with English abstract).
[15] Elith J, Graham C H, P. Anderson R P, Dudik M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M, Peterson A T, Philips S J, Richardson K, Scachetti-Pereira R, Schapire R E, Soberon J, Williams S, Wisz M S, Zimmermann N E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129-151.
[16] Yan H Y, He J, Zhao Y F, Zhang L, Zhu C P, Wu D. Gentiana macrophylla response to climate change and vulnerability evaluation in China. Glob Ecol Conserv, 2020, 22: e00948.
[17] Yan H Y, He J, Xu X C, Yao X Y, Wang G Y, Tang L G, Feng L, Zou L M, Gu X L, Qu Y F, Qu L F. Prediction of potentially suitable distributions of Codonopsis pilosula in China based on an optimized MaxEnt model. Front Ecol Evol, 2021, 9: 773396.
[18] Cao Z, Zhang L, Zhang X X, Guo Z J. Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model. Sustainability, 2021, 13: 11253.
[19] 石子为, 康利平, 彭华胜, 杨少华, 张丽霞, 景志贤, 陈敏, 刘大会. 我国滇重楼种植的气候适宜性研究. 中国中药杂志, 2017, 42: 3435-3442.
Shi Z W, Kang L P, Peng H S, Yang S H, Zhang L X, Jing Z X, Chen M, Liu D H. Climate suitability for potential Pairs polyphylla var. yunnanensis cultivation in China. China J Chin Mater Med, 2017, 42: 3435-3442 (in Chinese with English abstract).
[20] Ye P C, Zhang G F, Zhao X, Chen H, Si Q, Wu J Y. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: a case study of Northwest Yunnan, China. Ecol Evol, 2021, 11: 13052-13067.
doi: 10.1002/ece3.7999 pmid: 34646452
[21] 张雪可, 张虹, 章鹏飞, 秦委, 刘守金, 彭代银, 李雷. 湖北黄精潜在分布区预测及生态适宜性研究. 中国农业科技导报, 2021, 23(8): 185-192.
Zhang X K, Zhang H, Zhang P F, Qin W, Liu S J, Peng D Y, Li L. Prediction of the potential distributions and ecological suitability of Polygonatum zanlanscianense Pamp. J Agric Sci Technol, 2021, 23(8): 185-192 (in Chinese with English abstract).
[22] Warren D L, Glor R E, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010, 33: 607-611.
[23] 金航, 崔秀明, 朱艳, 陈中坚, 张金渝. 气象条件对三七药材道地性的影响. 西南农业学报, 2005, 18: 825-828.
Jin H, Cui X M, Zhu Y, Chen Z J, Zhang J Y. Effects of meteorological conditions on the quality of Radix notoginseng. Southwest China J Agric Sci 2005, 18: 825-828 (in Chinese with English abstract).
[24] 董诚明, 谷巍. 药用植物栽培学(第3版). 上海: 上海科学技术出版社, 2020. pp 142-145.
Dong C M, Gu W. Cultivation of Medicinal Plants, 3rd edn. Shanghai: Shanghai Scientific & Technical Publishers, 2020. pp 142-145 (in Chinese).
[25] 张琴, 曾凡琳, 张东方, 谢彩香, 陈士林. 基于最大熵模型的三七生态适宜区及生态特征. 药学学报, 2016, 51: 1629-1637.
pmid: 29932619
Zhang Q, Zeng F L, Zhang D F, Xie C X, Chen S L. Ecology suitability regions and ecological characteristics of Panax notoginseng (Burk.) F. H. Chen based on maximum entropy model. Acta Pharm Sin, 2016, 51: 1629-1637 (in Chinese with English abstract).
pmid: 29932619
[26] Zhan P, Wang F Y, Xia P G, Zhao G H, Wei M T, Wei F G, Han R L. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind Crops Prod, 2022, 176: 114416.
[27] 孟祥霄, 黄林芳, 董林林, 李西文, 魏富刚, 陈中坚, 吴杰, 孙成忠, 余育启, 陈士林. 三七全球产地生态适宜性及品质生态学研究. 药学学报, 2016, 51: 1483-1493.
Meng X X, Huang L F, Dong L L, Li X W, Wei F G, Chen Z J, Wu J, Sun C Z, Yu Y Q, Chen S L. Analysis of global ecology of Panax notoginseng in suitability and quality. Acta Pharm Sin, 2016, 51: 1483-1493 (in Chinese with English abstract).
[28] Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quart Royal Meteorol Soc, 1924, 50: 121-126.
[29] Evans J M, Fletcher R J Jr, Alavalapati J A. Using species distribution models to identify suitable areas for biofuel feedstock production. GCB Bioenergy, 2010, 2: 63-78.
[30] 金正强, 代春艳, 崔秀明, 高明菊, 杨晓艳, 王承潇, 曲媛, 杨野. 不同产地三七地下部营养成分分析. 昆明理工大学学报(自然科学版), 2020, 45(6): 111-118.
Jin Z Q, Dai C Y, Cui X M, Gao M J, Yang X Y, Wang C X, Qu Y, Yang Y. An analysis of nutrient content in the underground part of Panax notoginseng from different producing areas. J Kunming Univ Sci Technol (Nat Sci Edn), 2020, 45(6): 111-118 (in Chinese with English abstract).
[31] 丁颖, 何忠俊, 陈中坚, 余育启, 刘义, 梁社往, 胡德波. 生态因子对三七稳定碳同位素比率的影响. 云南农业大学学报(自然科学), 2014, 29: 370-379.
Ding Y, He Z J, Chen Z J, Yu Y Q, Liu Y, Liang S W, Hu D B. The effect of ecological factors on the ratio of stable carbon isotope in Panax notoginseng. J Yunnan Agric Univ (Nat Sci Edn), 2014, 29: 370-379 (in Chinese with English abstract).
[32] 崔秀明, 徐珞珊, 王强, 陈中坚. 云南三七道地产区地质背景及土壤理化状况分析. 中国中药杂志, 2005, 30: 332-335.
Cui X M, Xu L S, Wang Q, Chen Z J. Analysis on the geologic background and physicochemical properties of soil for the cultivation of Panax notoginseng in Yunnan province. China J Chin Mater Med, 2005, 30: 332-335 (in Chinese with English abstract).
[33] Phillips S J, Dudík M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31: 161-175.
[34] Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293.
doi: 10.1126/science.3287615 pmid: 3287615
[35] Wang C, Shi X Y, Liu J G, Zhao J C, Bo X Z, Chen F, Chu Q Q. Interdecadal variation of potato climate suitability in China. Agric Ecosyst Environ, 2021, 310: 107293.
[36] 陈胜. 云南省60年气候变化特征分析. 科技与创新, 2020, (1): 67-69.
Chen S. Analysis on characteristics of climate change in Yunnan province in the past 60 years. Sci Technol Innov, 2020, (1): 67-69 (in Chinese).
[1] 成华强, 侯青青, 朱敏, 杨轩. 气候变化与轮作制度对晋北饲用燕麦产草量的影响[J]. 作物学报, 2024, 50(10): 2599-2613.
[2] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[3] 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305-1315.
[4] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[5] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[6] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830.
[7] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[8] 王萌萌,杨沈斌,江晓东,王应平,陈德,黄维,于庚康,石春林. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 2016, 42(01): 82-92.
[9] 艾治勇,郭夏宇,刘文祥,马国辉,青先国. 长江中游地区双季稻安全生产日期的变化[J]. 作物学报, 2014, 40(07): 1320-1329.
[10] 江敏,金之庆,石春林,林文雄. 福建省基于自适应调整的水稻生产对未来气候变化的响应[J]. 作物学报, 2012, 38(12): 2246-2257.
[11] 李克南,杨晓光,刘园,荀欣,刘志娟,王静,吕硕,王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素[J]. 作物学报, 2012, 38(08): 1483-1493.
[12] 杨沈斌,申双和,赵小艳,赵艳霞,许吟隆,王主玉,刘娟,张玮玮. 气候变化对长江中下游稻区水稻产量的影响[J]. 作物学报, 2010, 36(09): 1519-1528.
[13] 朱大威;金之庆. 气候及其变率变化对东北地区粮食生产的影响[J]. 作物学报, 2008, 34(09): 1588-1597.
[14] 居辉;熊伟;许吟隆;林而达. 气候变化对我国小麦产量的影响[J]. 作物学报, 2005, 31(10): 1340-1343.
[15] 金之庆, 葛道阔, 石春林, 高亮之. 东北平原适应全球气候变化的若干粮食生产对策的模拟研究[J]. 作物学报, 2002, 28(01): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!