欢迎访问作物学报,今天是

作物学报

• •    

基于MaxEnt模型和HPLC技术的独活潜在适宜种植区预测及品质区化研究

胡超贵,董鹏斌,王辰玥,李欠*   

  1. 甘肃农业大学农学院 / 干旱生境作物学国家重点实验室, 甘肃兰州730070
  • 收稿日期:2024-07-30 修回日期:2025-01-23 接受日期:2025-01-23 网络出版日期:2025-02-17
  • 基金资助:
    本研究由国家自然科学基金项目(31860102)和陇原青年创新创业人才项目(GSRC-2023-1-4)资助。

Exploring the prediction of planting suitability distribution and quality zoning of Angelica publicen Maxin f. biserrata Shan et yuan based on MaxEnt model and HPLC

HU Chao-Gui,DONG Peng-Bin,WANG Chen-Yue,LI Qian*   

  1. College of Agronomy, Gansu Agricultural University / State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
  • Received:2024-07-30 Revised:2025-01-23 Accepted:2025-01-23 Published online:2025-02-17
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31860102) and the Longyuan Youth Innovation and Entrepreneurship Talent Project (GSRC-2023-1-4).

摘要:

独活是一种传统中药材与经济作物,由于产地较为广泛,质量难以控制。本研究采用最大熵模型(MaxEnt)预测独活在中国当前和未来潜在适宜分布区域,揭示了气候变化如何驱动其空间分布格局的演变,同时结合高效液相色谱(HPLC)ArcGIS空间分析技术探讨了影响独活香豆素积累的主要环境因子,并区划优质适宜种植范围。结果表明,影响独活当前种植适宜分布的关键环境因子包括年温度变化范围、最冷月最低气温、5月太阳辐射量、最冷季平均气温、最暖季节降水量。种植适宜区主要分布在四川中部(阿坝和甘孜)、甘肃南部(平凉)、陕西南部(秦岭)、湖北南部(宜昌)和云南南部等季风气候区。模型预测表明,未来的气候变化将使适宜分布的中心向北部和高纬度地区移动,导致适宜地区的减少。可能受降水的影响,香豆素含量从高适宜区向低适宜区逐渐减少,优质种植适宜区域主要集中于四川中部、甘肃南部、湖南、河南、湖北南部和安徽南部,与当前种植适宜分布基本一致,且未来面积也将逐渐减少。本研究对优化独活种植、提高质量控制水平、提高经济效益和促进产业发展提供了理论依据和技术支撑。

关键词: 独活, MaxEnt模型, 高效液相色谱, 气候响应, 质量评价

Abstract:

Angelicae publicentis Radix (Duhuo), a traditional Chinese medicine (TCM) and an economically important crop, presents challenges in quality control due to its wide geographic distribution. In this study, the MaxEnt model was employed to predict the current and future potential distribution of Duhuo in China, elucidating how climate change influences its spatial distribution patterns. Furthermore, High-Performance Liquid Chromatography (HPLC) combined with ArcGIS spatial analysis was applied to investigate the key environmental factors affecting coumarin accumulation and to identify optimal cultivation zones. The results revealed that the primary environmental factors influencing the current distribution of Duhuo include the annual temperature range, minimum temperature of the coldest month, solar radiation in May, mean temperature of the coldest quarter, and precipitation in the warmest quarter. The most suitable planting regions are primarily located in monsoon-influenced areas, including central Sichuan (Aba and Ganzi), southern Gansu (Pingliang), southern Shaanxi (Qinling), southern Hubei (Yichang), and southern Yunnan. Climate change projections suggest that the centers of suitable habitats will shift northward and to higher latitudes, resulting in a reduction in suitable areas. Coumarin content appears to decline gradually from high-suitability regions to low-suitability regions, possibly influenced by precipitation patterns. The optimal areas for cultivating high-quality Duhuo are concentrated in central Sichuan, southern Gansu, Hunan, Henan, southern Hubei, and southern Anhui, aligning closely with current suitable planting regions, although these areas are also expected to shrink in the future. This study provides valuable insights for optimizing Duhuo cultivation areas, enhancing quality control, increasing economic benefits, and promoting industrial development.

Key words: Angelica publicen Maxin f. biserrata Shan et yuan, MaxEnt model, HPLC, climatic response, quality evaluation

[1] Yuan Q X, Zhang J, Xiao C L, Harqin C, Ma M Y, Long T, Li Z H, Yang Y L, Liu J K, Zhao L Y. Structural characterization of a low-molecular-weight polysaccharide from Angelica pubescens Maxim. f. biserrata Shan et Yuan root and evaluation of its antioxidant activity. Carbohyd Polym, 2020, 236: 116047.

[2] 罗梅, 赵琦, 杨梅, 李开杨, 谢龙. 独活考证及临床应用. 微量元素与健康研究, 2024, 41(23): 31–33.

Luo M, Zhao Q, Yang M, Li K Y, Xie L. Textual research and clinical application of Angelicae pubescentis Radix. Stud Trace Elem Health, 2024, 41(23): 31–33 (in Chinese with English abstract).

[3] Guo Q Q, Du G C, Li Y X, Liang C Y, Wang C, Zhang Y N, Li R G. Nematotoxic coumarins from Angelica pubescens Maxim. f. biserrata Shan et Yuan roots and their physiological effects on Bursaphelenchus xylophilus. J Nematol, 2018, 50: 559–568.

[4] 周璐丽, 曾建国. 独活化学成分及药理活性研究进展. 中国现代中药, 2019, 21: 17391748.

Zhou L L, Zeng J G. Research advances on chemical constituents and pharmacological effects of Angelica pubescens. Mod Chin Med, 2019, 21: 1739–1748 (in Chinese with English abstract).

[5] 郭晓亮, 林先明, 郭杰, 游景茂. 独活研究现状与展望. 安徽农业科学, 2014, 42: 1167311674.

Guo X L, Lin X M, Guo J, You J M. The research status and prospect of Angelicae pubescentis Radix. J Anhui Agric Sci, 2014, 42: 11673–11674.

[6] 李欠, 姬党通, 高慧. 基于质谱成像技术的独活鲜根中香豆素类成分的空间分布特征研究. 中草药, 2023, 54: 34383445.

Li Q, Ji D T, Gao H. Spatial distribution of coumarins in Angelica pubescens fresh roots by MALDI-MSI. Chin Trad Herb Drugs, 2023, 54: 3438–3445 (in Chinese with English abstract).

[7] Yu K T, Little D, Plumb R, Smith B. High-throughput quantification for a drug mixture in rat plasma-a comparison of Ultra Performance liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2006, 20: 544–552.

[8] Yang X Y, Liu Y L, Hou A J, Yang Y, Tian X, He L Y. Systematic review for geo-authentic Lonicerae japonicae Flos. Front Med, 2017, 11: 203–213.

[9] 陈颖, 杨飞燕, 周喆, 陈靠山, 柳春燕. 高效液相色谱法同时测定独活中8种香豆素类化合物的含量. 中药新药与临床药理, 2022, 33(3): 380385.

Chen Y, Yang F Y, Zhou Z, Chen K S, Liu C Y. Simultaneous determination of 8 coumarins in Angelicae pubescentis Radix by HPLC. Trad Chin Drug Res Clin Pharmacol, 2022, 33(3): 380–385 (in Chinese with English abstract).

[10] 舒义家. 桂北高山独活林下种植技术. 特种经济动植物, 2023, 26(9): 100102.

Shu Y J. Planting techniques of Angelica pubescens in alpine areas of northern Guangxi. Spec Econ Anim Plants, 2023, 26(9): 100–102 (in Chinese).

[11] 张治存. 亳州独活引种栽培技术研究. 农业科技与信息, 2019, (21): 28–31.

Zhang Z C. Study on introduction and cultivation techniques of Radix Angelicae pubescentis in Bozhou. Agric Sci Technol Inf, 2019, (21): 28–31 (in Chinese).

[12] 杜肖, 王亚鹏, 钱锦秀, 杨洪军, 刘晖晖, 詹志来. 经典名方中独活与羌活的本草考证. 中国实验方剂学杂志, 2023, 29(5): 6883.

Du X, Wang Y P, Qian J X, Yang H J, Liu H H, Zhan Z L. Herbal textual research on Angelicae pubescentis Radix and Notopterygii rhizoma et Radix in famous classical formulas. Chin J Exp Trad Med Formul, 2023, 29(5): 68–83 (in Chinese with English abstract).

[13] 顿珠次仁, 朱根华, 邹志琴, 严志宏, 黄秀珍. -质联用测定不同产地独活中蛇床子素和欧前胡素的含量. 中药新药与临床药理, 2015, 26(1): 105108.

Dunzhuciren, Zhu G H, Zou Z Q, Yan Z H, Huang X Z. Determination of osthole and imperatorin in Angelicae pubescentis Radix from different habitats by HPLC-MS/MS. Trad Chin Drug Res Clin Pharmacol, 2015, 26(1): 105–108 (in Chinese with English abstract).

[14] 雷军成, 徐海根, 吴军, 关庆伟, 丁晖, 崔鹏. 气候变化情景下物种适宜生境预测研究进展. 四川动物, 2015, 34: 794800.

Lei J C, Xu H G, Wu J, Guan Q W, Ding H, Cui P. Advance in predicting the suitable habitat of species under future climate change. Sichuan J Zool, 2015, 34: 794–800 (in Chinese with English abstract).

[15] 王露, 赵炯超, 王艺璇, 米艳华, 张宁怡, 赵明宇, 褚庆全. 三七种植适宜区的分布及其对气候变化的响应. 作物学报, 2024, 50: 28602869.

Wang L, Zhao J C, Wang Y X, Mi Y H, Zhang N Y, Zhao M Y, Chu Q Q. Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change. Acta Agron Sin, 2024, 50: 2860–2869 (in Chinese with English abstract).

[16] Pearson R G, Raxworthy C J, Nakamura M, Townsend Peterson A. ORIGINAL ARTICLE: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr, 2007, 34: 102–117.

[17] Walter M, Brugger K, Rubel F. Usutu virus induced mass mortalities of songbirds in central Europe: are habitat models suitable to predict dead birds in unsampled regions? Prev Vet Med, 2018, 159: 162–170.

[18] Hernandez P A, Graham C H, Master L L, Albert D L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 2006, 29: 773–785.

[19] Venne S, Currie D J. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers Dis, 2021, 27: 873–886.

[20] 张惠惠, 孟祥霄, 林余霖, 陈士林黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志, 2023, 48: 49594966.

Zhang H H, Meng X X, Lin Y L, Chen S L, Huang L F. Prediction of global potential growth areas for Panax ginseng based on GMPGIS system and MaxEnt model. China J Chin Mater Med, 2023, 48: 4959–4966 (in Chinese with English abstract).

[21] Qaderi M M, Martel A B, Strugnell C A. Environmental factors regulate plant secondary metabolites. Plants (Basel), 2023, 12: 447–447.

[22] Wan G Z, Wang L, Jin L, Chen J. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Ind Crops Prod, 2021, 170: 113783.

[23] Wang Y, Zhang L, Du Z X, Pei J, Huang L F. Chemical diversity and prediction of potential cultivation areas of Cistanche Herbs. Sci Rep, 2019, 9: 19737–19750.

[24] Xu N, Meng F Y, Zhou G F, Li Y F, Wang B, Lu H. Assessing the suitable cultivation areas for Scutellaria baicalensis in China using the Maxent model and multiple linear regression. Biochem Syst Ecol, 2020, 90: 104052.

[25] Zhu S D, Guo L P, Cui Y J, Xiao R L, Yu Z X, Jin Y, Fu R Q, Zhang J H, Xu T R, Chen J B, et al. Quality suitability modeling of volatile oil in Chinese materia medica–based on maximum entropy and independent weight coefficient method: case studies of Atractylodes lancea, Angelica sinensis, Curcuma longa and Atractylodes macrocephala. Ind Crops Prod, 2019, 142: 111807.

[26] Wang Z X, Jia Y J, Li P P, Tang Z S, Guo Y N, Wen L X, Yu H Q, Cui F, Hu F D. Study on environmental factors affecting the quality of Codonopsis Radix based on MaxEnt model and all-in-one functional factor. Sci Rep, 2023, 13: 20726.

[27] Du J L, Lu X, Geng Z P, Yuan Y Y, Liu Y, Li J L, Wang M J, Wang J L. Metabolites changes of Eucommia ulmoides Olive samaras from different regions and cultivars. Ind Crops Prod, 2022, 189: 115824.

[28] He P, Guo L F, Liu Y Z, Meng F Y, Peng C. Spatial dynamic simulation of important cash crops based on phenology with Scutellaria baicalensis Georgi as an example. Eur J Agron, 2023, 144: 126748.

[29] Yang S H, Cui X F. Building Regional Sustainable Development Scenarios with the SSP Framework. Sustainability, 2019, 11: 5712.

[30] Ab Lah N Z, Yusop Z, Hashim M, Mohd Salim J, Numata S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests, 2021, 12: 1449.

[31] Phillips S J, Dudík M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31: 161–175.

[32] 薄晓智, 石晓宇, 赵炯超, 林倩, 史梦霞, 商蒙非, 褚庆全. 基于MaxEnt模型的中国裸燕麦种植气候适宜性评价. 中国农业大学学报, 2021, 26(9): 110.

Bo X Z, Shi X Y, Zhao J C, Lin Q, Shi M X, Shang M F, Chu Q Q. Climatic suitability of naked oat (Avena nuda L.) planting in China based on MaxEnt model. J China Agric Univ, 2021, 26(9): 1–10 (in Chinese with English abstract).

[33] 张雪可, 张虹, 章鹏飞, 秦委, 刘守金, 彭代银, 李雷. 湖北黄精潜在分布区预测及生态适宜性研究. 中国农业科技导报, 2021, 23(8): 185192.

Zhang X K, Zhang H, Zhang P F, Qin W, Liu S J, Peng D Y, Li L. Prediction of the potential distributions and ecological suitability of Polygonatum zanlanscianense pampJ Agric Sci Technol, 2021, 23(8): 185–192 (in Chinese with English abstract).

[34] 张铁军. 中药质量认识与质量评价. 中草药, 2011, 42(1): 19.

Zhang T J. Realization and evaluation of Chinese materia medica quality. Chin Trad Herb Drugs, 2011, 42(1): 1–9 (in Chinese with English abstract).

[35] Zhan P, Wang F Y, Xia P G, Zhao G H, Wei M T, Wei F G, Han R L. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind Crops Prod, 2022, 176: 114416.

[36] 董凯, 梁世君, 柳喜琴, 武小龙, 王育峰. 独活的育苗与栽培技术措施研究. 河北农业, 2023, (3): 7274.

Dong K, Liang S J, Liu X Q, Wu X L, Wang Y F. Study on seedling raising and cultivation techniques of Radix Angelicae Pubescentis. Hebei Agric, 2023, (3): 72–74 (in Chinese).

[37] Amrit K, Pandey R P, Mishra S K, Daradur M. Relationship of drought frequency and severity with range of annual temperature variation. Nat Hazards, 2018, 92: 1199–1210.

[38] Walia S, Rathore S, Kumar R. Elucidating the mechanisms, responses and future prospects of medicinal and aromatic plants to elevated CO2 and elevated temperature. J Appl Res Med Aromat Plants, 2022, 26: 100365.

[39] 郭巧生. 药用植物栽培学. 北京: 高等教育出版社, 2009. pp 2930.

Guo Q S. Medicinal Plant Cultivation. Beijing: Higher Education Press, 2009. pp 29–30 (in Chinese).

[40] Shaban M, Ghehsareh Ardestani E, Ebrahimi A, Borhani M. Climate change impacts on optimal habitat of Stachys in flata medicinal plant in central Iran. Sci Rep, 2023, 13: 6580.

[41] Zhang R, Zhang M X, Yan Y M, Chen Y, Jiang L L, Wei X X, Zhang X B, Li H T, Li M H. Promoting the development of Astragalus mongholicus bunge industry in Guyang County (China) based on MaxEnt and remote sensing. Front Plant Sci, 2022, 13: 908114.

[42] 赵泽芳, 卫海燕, 郭彦龙, 顾蔚. 人参潜在地理分布以及气候变化对其影响预测. 应用生态学报, 2016, 27: 36073615. 

Zhao Z F, Wei H Y, Guo Y L, Gu W. Potential distribution of Panax ginseng and its predicted responses to climate change.Chin J Appl Ecol, 2016, 27: 3607–3615 (in Chinese with English abstract).

[43] 张敏, 阳桂平, 杜忠, 赵海茗, 蒋紫艳, 肖艳春, 李吉文. 食用独活林下人工栽培关键技术. 现代农业科技, 2022, (6): 4547.

Zhang M, Yang G P, Du Z, Zhao H M, Jiang Z Y, Xiao Y C, Li J W. Key techniques of artificial cultivation under edible Angelicae pubescentis Radix forest. Mod Agric Sci Technol, 2022, (6): 45–47 (in Chinese).

[44] 段珍, 吴凡, 闫启, 张吉宇. 植物香豆素生物合成途径及关键酶基因研究进展. 草业学报, 2022, 31: 217228.

Duan Z, Wu F, Yan Q, Zhang J Y. Research progress on plant coumarin biosynthesis pathway and the genes encoding the key enzymes. Acta Pratac Sin, 2022, 31: 217–228 (in Chinese with English abstract).

[45] 朱文娟, 李欠, 王爱敏, 许美玲, 陈垣. 不同商品独活的蛇床子素含量测定. 中兽医医药杂志, 2019, 38(4): 3437.

Zhu W J, Li Q, Wang A M, Xu M L, Chen Y. Contents determination of osthole of different Angelicae pubescentis Radix products. J Trad Chin Vet Med, 2019, 38(4): 34–37 (in Chinese with English abstract).

[46] 韩凤, 林茂祥, 罗川, 肖忠, 任星宇, 谭秋生, 章文伟. 不同产地独活及其混伪品的质量差异性分析. 西南师范大学学报(自然科学版), 2019, 44(10): 3439.

Han F, Lin M X, Luo C, Xiao Z, Ren X Y, Tan Q S, Zhang W W. On quality diversity analysis of Angelica pubescens f. biserrata in different habitats and its adulterants. J Southwest China Norm Univ (Nat Sci Edn), 2019, 44(10): 34–39 (in Chinese with English abstract).

[47] Mahajan M, Kuiry R, Pal K K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromat Plants, 2020, 18: 100255.

[48] Zandalinas S I, Sengupta S, Fritschi F B, Azad R K, Nechushtai R, Mittler R. The impact of multifactorial stress combination on plant growth and survival. New Phytol, 2021, 230: 1034–1048.

[49] Mikkelsen B L, Olsen C E, Lyngkjær M F. Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature. Phytochemistry, 2015, 118: 162–173.

[50] Gerganova M, Popova A V, Stanoeva D, Velitchkova M. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. Plant Physiol Biochem, 2016, 104: 234–241.

[51] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策:等水与非等水行为. 植物生态学报, 2017, 41: 10201032.

Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior. Chin J Plant Ecol, 2017, 41: 1020–1032 (in Chinese with English abstract).

[52] 莫斌, 李峰, 林若兰. 高标准农田建设水土保持工程作用探讨. 水土保持应用技术, 2024, (5): 5456.

Mo B, Li F, Lin R L. Discussion on the role of soil and water conservation engineering in high-standard farmland construction. Technol Soil Water Conserv, 2024, (5): 54–56 (in Chinese).

[53] 段辉良, 曹福祥. 中国亚热带南岭山地气候变化特点及趋势. 中南林业科技大学学报, 2012, 32(9): 110113.

Duan H L, Cao F X. Characteristics and trends of climate change of Chinese subtropical Nanling Mountain. J Cent South Univ For Technol, 2012, 32(9): 110–113 (in Chinese with English abstract).

[54] 张国斌, 张勃, 王东, 季定民, 王国强. 14年西南地区植被季节变化及与气候关系. 遥感信息, 2016, 31(1): 8995.

Zhang G B, Zhang B, Wang D, Ji D M, Wang G Q. Seasonal changes of vegetation in south Western China and its relation to climate factors in recent 14 years. Remote Sens Inf, 2016, 31(1): 89–95 (in Chinese with English abstract).

[55] 陈隆勋, 朱文琴, 王文, 周秀骥, 李维亮. 中国近45年来气候变化的研究. 气象学报, 1998, 56(3): 257–271.

Chen L X, Zhu W Q, Wang W, Zhou X J, Li W L. Studies on climate change in China in recent 45 years. Acta Meteor Sin, 1998, 56(3): 257–271 (in Chinese).

[56] Liu L, Guan L L, Zhao H X, Huang Y, Mou Q Y, Liu K, Chen T T, Wang X Y, Zhang Y, Wei B, Hu J Y. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol Inf, 2021, 63: 101324.

[57] Hou P, Wu S L, McCarty J L, Gao Y. Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmos Chem Phys, 2018, 18: 8173–8182.

[58] Mangani R, Tesfamariam E H, Engelbrecht C J, Bellocchi G, Hassen A, Mangani T. Potential impacts of extreme weather events in main maize (Zea mays L.) producing areas of South Africa under rainfed conditions. Reg Environ Change, 2019, 19: 1441–1452.

[59] 徐胜, 陈玮, 何兴元, 黄彦青, 高江艳, 赵诣, 李波. 高浓度CO2对树木生理生态的影响研究进展. 生态学报, 2015, 35: 24522460.

Xu S, Chen W, He X Y, Huang Y Q, Gao J Y, Zhao Y, Li B. Research advance in effect of elevated CO2 on eco-physiology of trees. Acta Ecol Sin, 2015, 35: 2452–2460 (in Chinese with English abstract).

[60] 刘方, 刘勇波, 李俊生, 黄海. 氢气在植物抗胁迫中的作用. 植物生理学报, 2015, 51: 141152.

Liu F, Liu Y B, Li J S, Huang H. The role of hydrogen in plant stress tolerance. Plant Physiol J, 2015, 51: 141–152 (in Chinese with English abstract).

[61] 鄢丹, 王伽伯, 李俊贤, 马丽娜, 肖小河. 论道地药材品质辨识及其与生态环境的相关性研究策略. 中国中药杂志, 2012, 37: 26722675.

Yan D, Wang J B, Li J X, Ma L N, Xiao X H. Strategy for research on quality identification and ecological environment-related of Dao-di herb. China J Chin Mater Med, 2012, 37: 2672–2675 (in Chinese with English abstract).

[62] 张保得, 蔡吹, 谢准, 余红娅, 刘光华, 吕德芳, 袁丽萍, 胡艳芳, 徐福荣. 气候变化情景下滇重楼在中国的适生性分析. 植物遗传资源学报, 2024, 25: 16011612.

Zhang B D, Cai C, Xie Z, Yu H Y, Liu G H, Lyu D F, Yuan L P, Hu Y F, Xu F R. Ecological suitability of Paris Polyphylla var. Yunnanensis in China under the situation of climate change. J Plant Genet Resour, 2024, 25: 1601–1612 (in Chinese with English abstract).

[63] He X, Burgess K S, Yang X F, Ahrends A, Gao L M, Li D Z. Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region. Ecol Evol, 2019, 9: 4055–4064.

[64] Guan Y L, Liu J G, Cui W H, Chen D L, Zhang J K, Lu H W, Maeda E E, Zeng Z Z, Beck H E. Elevation regulates the response of climate heterogeneity to climate change. Geophys Res Lett, 2024, 51: e2024GL109483.

[1] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[2] 王露, 赵炯超, 王艺璇, 米艳华, 张宁怡, 赵明宇, 褚庆全. 三七种植适宜区的分布及其对气候变化的响应[J]. 作物学报, 2024, 50(11): 2860-2869.
[3] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
[4] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[5] 冯发强,王国华,王青峰,杨瑞春,李小琴. 甜玉米乳熟期籽粒维生素A源和维生素E组分的变异[J]. 作物学报, 2014, 40(07): 1227-1234.
[6] 孙娟,李为喜,张妍,孙丽娟,董晓丽,胡学旭,王步军. 用超高效液相色谱串联质谱法同时测定谷物中12种真菌毒素[J]. 作物学报, 2014, 40(04): 691-701.
[7] 刘敏轩,陆平. 中国谷子育成品种维生素E含量分布规律及其与主要农艺性状和类胡萝卜素的相关性分析[J]. 作物学报, 2013, 39(03): 398-408.
[8] 李为喜, 郑床木, 武力, 李欣, 李静梅, 宋敬可, 杨秀兰, 王步军. 测定玉米中伏马毒素的免疫亲和层析净化高效液相色谱法[J]. 作物学报, 2012, 38(03): 556-562.
[9] 杨丹, 耿志明, 马鸿翔, 姚金保, 张旭, 张平平, 张鹏. 高效液相色谱-紫外法同时检测小麦中DON、15ACDON和3ACDON[J]. 作物学报, 2012, 38(01): 186-189.
[10] 张桂云, 刘如如, 张鹏, 徐勇, 朱姜, 顾铭洪, 梁国华, 刘巧泉. 水稻籽粒维生素E及组分在品种间的变异与分布[J]. 作物学报, 2012, 38(01): 55-61.
[11] 王春娥, 赵团结, 盖钧镒. 大豆异黄酮组分HPLC快速分析技术及其在豆腐加工中的应用[J]. 作物学报, 2010, 36(12): 2062-2072.
[12] 周毅,付志远,李青,徐淑兔,CHANDER Subhash,杨小红,李建生,严建兵. 高油和普通玉米自交系类胡萝卜素和生育酚含量的比较分析[J]. 作物学报, 2009, 35(11): 2073-2084.
[13] 唐建卫;刘建军;张平平;张艳;李豪圣;赵振东;曲延英;何中虎. 济麦20面团流变学特性和面包加工品质稳定性及与蛋白质组分的关系分析[J]. 作物学报, 2007, 33(11): 1788-1793.
[14] 张平平 ; 张岐军; 刘 丽; 夏先春; 何中虎. Glu-B1位点亚基色谱鉴定及7OE对面团强度的影响[J]. 作物学报, 2007, 33(10): 1575-1581.
[15] 张平平;陈东升;张勇;夏先春;何中虎. 春播小麦醇溶蛋白组成及其对品质性状的影响[J]. 作物学报, 2006, 32(12): 1796-1801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!