欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 186-189.doi: 10.3724/SP.J.1006.2012.00186

• 研究简报 • 上一篇    

高效液相色谱-紫外法同时检测小麦中DON、15ACDON和3ACDON

杨丹,耿志明,马鸿翔*,姚金保,张旭,张平平,张鹏   

  1. 江苏省农业科学院 / 江苏省农业生物学重点实验室,江苏南京 210014
  • 收稿日期:2011-05-27 修回日期:2011-09-18 出版日期:2012-01-12 网络出版日期:2011-09-30
  • 通讯作者: 马鸿翔, E-mail: mahx@jaas.ac.cn
  • 基金资助:

    本研究由江苏省农业科技自主创新基金项目[CX(09)635, CX(10)128], 现代农业产业技术体系项目(nycytx-03), 国家科技部国际合作项目(2009DFA32020)和国家转基因生物新品种培育重大专项(2008ZX08002-001)资助。

Establishment of a HPLC-UV Method for Simultaneous Determination of DON, 15ACDON, and 3ACDON in Wheat

YANG Dan,GENG Zhi-Ming,MA Hong-Xiang,YAO Jin-Bao,ZHANG Xu,ZHANG Ping-Ping,ZHANG Peng   

  1. Provincial Key Laboratory of Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2011-05-27 Revised:2011-09-18 Published:2012-01-12 Published online:2011-09-30
  • Contact: 马鸿翔, E-mail: mahx@jaas.ac.cn

摘要: 建立了测定小麦中B型单端孢酶烯族毒素脱氧雪腐镰刀菌烯醇(deoxynivalenol, DON)、3-乙酰脱氧雪腐镰刀菌烯醇(3-acetyldeoxynivalenol, 3-ACDON)和15-乙酰脱氧雪腐镰刀菌烯醇(15-acetyldeoxyni-valenol, 15-ACDON)的高效液相色谱-紫外(HPLC-UV)检测方法。用水提取小麦样品,提取液经无水乙醇等体积沉淀,再结合Oasis HLB固相萃取小柱可取得较好的净化效果。采用乙腈/0.005%磷酸水溶液二元梯度洗脱程序在高效液相色谱-紫外检测器上完成DON、15ACDON和3ACDON的定性定量分析。结果表明,在0.5~15.0 mg L-1线性范围内,DON、15ACDON和3ACDON的平均加标回收率分别为89.8%、93.4%和92.9%,相对标准偏差分别为2.2%、2.0%和2.5% (n=3);检测限分别为12.2、10.5和16.7 μg kg-1。该方法准确、重现性好,样品净化方法使杂峰干扰少,大幅减少有机溶剂的使用,成本低,适用于小麦中B型单端孢酶烯族毒素的大批量检测。

关键词: 小麦, B型单端孢酶烯族毒素, 高效液相色谱-紫外检测法

Abstract: A HPLC-UV method was established to determine deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ACDON) and 15- acetyldeoxynivalenol (15-ACDON) in wheat. Wheat sample was extracted by water, and the extracting solution was precipitated with an equal volume of ethanol followed by solid phase extraction with Oasis HLB cartridge. Qualitative and quantitative analyses of DON, 15ACDON and 3ACDON were done by HPLC-UVD using gradient elution program with acetonitrile and 0.005% phosphoric acid solution. Results showed that at the linear range of 0.5–15.0 mg L-1, the recoveries were 89.8%, 93.4%, and 92.9%, respectively. The relative standard deviations were 2.2%, 2.0%, and 2.5%, respectively, and the detection limit levels were 12.2, 10.5, and 16.7 μg kg-1, respectively. The method was accurate and reproducible. Sample purification lessened interference peaks, and due to the use of organic solvents was greatly reduced, the cost was decreased. Therefore, the method was suitable for the large batch determination of type B trichothecenes in wheat.

Key words: Wheat, B trichothecenes, HPLC-UV

[1]Cavaliere C, D’Ascenzo G, Foglia P, Pastorini E, Samperi R, Laganà A. Determination of type B trichothecenes and macrocyclic lactone mycotoxins in field contaminated maize. Food Chem, 2005, 92: 559–568
[2]Wang Y-Z(王裕中), Miller J D. Toxin producing potential of Fusarium graminearum from China. Mycosystema (真菌学报), 1994, 13(3): 229–234 (in Chinese with English abstract)
[3]Zhang P(张鹏), Ma H-X(马鸿翔). Biosynthesis and regulation of trichothecenes in Fusarium species. Biotechnol Bull (生物技术通报), 2009, 1: 11–15 (in Chinese with English abstract)
[4]FAO/WHO, Summary report of the seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), issued 16th March 2010, available at http://www.who.int/foodsafety/chem/summary72 rev.pdf
[5]Wolf C E, Bullerman L B. Heat and pH alter the concentration of deoxynivalenol in an aqueous environment. Food Prot, 1998, 61: 365–367
[6]Wang Y-Z(王裕中), Chen H-G(陈怀古), Yang X-Y(杨新宁), Lu M(陆鸣), Wu Z-F(吴志凤). Bioactivity of crude toxin produced by Fusarium graminearum and its application in identification of fusarium head blight resistance of wheat cultivars. China Agric Sci (中国农业科学), 1989, 2(4): 54–57 (in Chinese with English abstract)
[7]Wei R-Y(魏润蕴). Thin-layer chromatography determining of deoxynivalenol in wheat. J Hyg Res (卫生研究), 1986, 15(5): 40–43 (in Chinese)
[8]Trucksess M W, Page S W, Wood G E, Cho T H. Determination of deoxynivalenol in white flour, whole wheat flour, and bran by solid-phase extraction/liquid chromatography: interlaboratory study. J AOAC Int, 1998, 81: 880–886
[9]Scott P M, Kanhere S R. Comparison of column phases for separation of derivatized trichothecenes by capillary gas chromatography. J Chromatogr, 1986, 368: 374–380
[10]Tacke B K, Casper H H. Determination of deoxynivalenol in wheat, barley, and malt by column cleanup and gas chromatography with electron capture detection. J AOAC Int, 1996, 79: 472–475
[11]Jestoi M, Ritieni A, Rizzo A. Analysis of the Fusarium mycotoxins fusaproliferin and trichothecenes in grains using gas chromatography-mass spectrometry. J Agric Food Chem, 2004, 52: 1464–1469
[12]Klötzel M, Gutsche B, Lauber U, Humpf H U. Determination of 12 type A and B trichothecenes in cereals by liquid chromatography electrospray ionization tandem mass spectrumetry. J Agric Food Chem, 2005, 53: 8904–8910
[13]Park J J, Chu F S. Assessment of mimunochemical methods for the analysis of trichothecene mycotoxins in naturally occur-ringmoldy corn. J AOAC Int, 1996, 79: 465–471
[14]Casale W L, Pestka J J, Hart L P. Enzyme-linked mimunosor-bentassay employingmonoclonalantibody specific for deoxynivalenol (vomitoxin) and sever alanalogues. J Agric Food Chem, 1988, 36: 663–668
[15]Laamanen I, Veijalainen P. Factors affecting the results of T-2 mycotoxin ELISA assay. J Food Addit Contam, 1992, 9: 337–343
[16]Turner N W, Subrahmanyam S, Piletsky S A. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta, 2009, 632: 168–180
[17]Klötzel M, Schmidt S, Lauber U, Thielert G, Humpf H U. Comparison of different clean-up procedures for the analysis of deoxynivalenol in cereal-based food and validation of a reliable HPLC method. Chromatographia, 2005, 62: 41–48
[18]Jiménez M, Mateo R. Determination of mycotoxins produced by Fusarium isolates from banana fruits by capillary gas chromatography and highperformance liquid chromatography. J Chromatogr A, 1997, 778: 363–372
[19]Luongo D, Severino L, Bergamo P, D’Arienzo R, Rossi M. Trichothecenes NIV and DON modulate the maturation of murine dendritic cells. Toxicon, 2010, 55: 73–80
[20]Yasuaki D, Sayaka K, Masaomi K, Yukie S, Tomoaki H, Keisuke S, Kunitoshi M, Susumu K, Yoshiko S K, Makoto S. Rapid deposition of glomerular IgA in BALB/c mice by nivalenol and its modifying effect on high IgA strain (HIGA) mice. Exp Toxicol Pathol, 2011, 63: 17–24
[21]Bony S, Olivier-Loiseau L, Carcelen M, Devaux A. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicol in Vitro, 2007, 21: 457–465
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!