欢迎访问作物学报,今天是

作物学报

• •    

一种玉米穗腐病新病原棘孢木霉的分离与鉴定

肖森林1,**,阙凡2,**,周治寰2,**,张海霞1,邢锦丰1,朱祥彰2,张彦冰2,张楠2,孙轩1,王荣焕1,宋伟1,王维香2,*,赵久然1,*   

  1. 1北京市农林科学院玉米研究所, 北京100097; 2北京农学院植物科学技术学院, 北京100096
  • 收稿日期:2025-02-27 修回日期:2025-07-09 接受日期:2025-07-09 网络出版日期:2025-07-28
  • 通讯作者: 王维香, E-mail: wangwei6455@sina.com; 赵久然, E-mail: maizezhao@126.com
  • 基金资助:
    本研究由北京市农林科学院科技创新能力建设专项(KJCX20240332)和国家自然科学基金项目(31871638)资助。

Isolation and identification of a new pathogen Trichoderma asperellum causing ear rot in maize

XIAO Sen-Lin1,**,QUE Fan2,**,ZHOU Zhi-Huan2,**,ZHANG Hai-Xia1,XING Jin-Feng1,ZHU Xiang-Zhang2,ZHANG Yan-Bing2,ZHANG Nan2,SUN Xuan1,WANG Rong-Huan1,SONG Wei1,WANG Wei-Xiang2,*,ZHAO Jiu-Ran1,*#br#   

  1. 1 Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 2 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 100096, China
  • Received:2025-02-27 Revised:2025-07-09 Accepted:2025-07-09 Published online:2025-07-28
  • Supported by:
    This study was supported by the Special Project for Science and Technology Innovation Capacity Building of Beijing Academy of Agricultural and Forestry Sciences (KJCX20240332) and the National Natural Science Foundation of China (31871638).

摘要:

玉米穗腐病是造成玉米籽粒减产、品质变差的一种主要病害。该病是由一种或多种病原真菌复合侵染引起的病害,其病原菌种类因环境和地域差异而复杂多样。以拟轮枝镰孢(Fusarium verticillioides)和禾谷镰孢(Fusarium graminearum)等为主的20个病原菌属种可侵染玉米,引起穗腐病。近几年着生白色菌丝和青绿色分生孢子的穗腐病果穗频繁出现,并且其发病率呈逐年上升趋势。然而,这种青绿色穗腐病的致病菌尚未被明确鉴定。本研究通过形态学鉴定、rDNA-ITS测序序列分析、全基因组测序相结合的方法对分离到的病原菌进行鉴定。结果表明,引起玉米青绿色穗腐病的致病菌为新病原菌棘孢木霉(Trichoderma asperellum)。利用WGA488染色方法,观察到棘孢木霉的分生菌丝能够侵染玉米籽粒胚乳部位,进一步证实了棘孢木霉对玉米穗腐病的致病性。选取代表性棘孢木霉菌株Tr.10,采用果穗针刺注射法用分生孢子悬浮液接种419份玉米自交系,进行致病性再测定。结果表明,Tr.10分生孢子可成功再侵染玉米不同自交系,引起玉米棘孢木霉穗腐病。不同自交系对棘孢木霉穗腐病抗性存在显著差异。419份玉米自交系中,高抗、抗病、中抗、感病和高感的自交系占比分别占6.8%30.4%30.7%24.9%和7.1%PHN47F321、京2416K25份自交系对棘孢木霉穗腐病表现高抗。本研究结果将为玉米穗腐病的抗性基因挖掘、优良品种选育推广提供重要参考。

关键词: 玉米穗腐病, 棘孢木霉, 致病性, 果穗针刺接种法, 抗性鉴定

Abstract:

Maize ear rot, caused by pathogenic fungi, significantly reduces both yield and grain quality. More than 20 pathogens have been reported to cause this disease, with F. verticillioides and F. graminearum being the most prevalent in China. In recent years, a distinct form of ear and grain rot, characterized by white hyphae and greenish-blue spores, has been frequently observed in various maize-growing regions across the country. However, the specific pathogen responsible for this type of ear rot had not been clearly identified. In this study, we identified the pathogen using a combination of morphological characterization, rDNA-ITS sequencing, and whole-genome sequencing. The results revealed that T. asperellum is the causative agent of maize greenish ear rot. A representative strain, Tr.10, was selected for pathogenicity re-evaluation by inoculating 419 maize inbred lines with a conidial suspension using ear needle-inoculation. The results confirmed that Tr.10 conidia successfully reinfected a wide range of inbred lines, inducing typical T. asperellum ear rot symptoms. Significant variation in disease resistance was observed across the tested lines. Among the 419 genotypes, 6.8% were classified as highly resistant, 30.4% as resistant, 30.7% as moderately resistant, 24.9% as susceptible, and 7.1% as highly susceptible. Notably, 25 inbred lines, including PHN47, F321, and Jing 2416K, exhibited high levels of resistance. These findings provide important insights into resistance mechanisms and offer a foundation for molecular breeding of Trichoderma ear rot-resistant maize cultivars.

Key words: maize ear rot, T. asperellum, pathogenesis, needle spike cob inoculation, resistance identification

[1]李小平,董怀玉,陶烨,姜钰,王丽娟,刘旸,刘延军.玉米穗粒腐病研究概况.杂粮作, 2007, 27(2): 130–132.

Li X P, Dong H Y, Tao Y, Jiang Y, Wang L J, Liu Y, Liu Y J. General situation of corn ear rot research.Rain Fed Crops, 2007, 27(2): 130–132 (in Chinese).

[2]张帆,万雪琴,潘光堂.玉米抗穗粒腐病QTL定位.作物学报, 2007, 33: 491–496.

Zhang F, Wan X Q, Pan G T. Molecular mapping of QTL for resistance to maize ear rot caused byFusarium moniliforme.Acta Agron Sin, 2007, 33: 491–496 (in Chinese with English abstract).

[3]张帆,万雪琴,潘光堂.玉米穗粒腐病研究进展及分子标记辅助选择策略.分子植物育种, 2004, 2: 122–126.

Zhang F, Wan X Q, Pan G T. Advances on research of maize ear rot and strategies for its QTL mapping and marker-assisted selection (MAS).Mol Plant Breed, 2004, 2: 122–126 (in Chinese with English abstract).

[4]张海剑,索相敏.河北省玉米穗腐病的发生情况及防治建议. 现代农村科技, 2016, (10): 23.

Zhang H J, Suo X M. Occurrence and control suggestions of maize ear rot in Hebei Province.Xiandai Nongcun Keji, 2016, (10): 23 (in Chinese).

[5] Balconi C, Berardo N, Locatelli S, Lanzanova C, Torri A, Redaelli R, Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines.Phytopathol Mediterr, 2014, 53: 14–26.

[6] Jiang B W, Wang D Y, Zhou J, Cai J, Jiang J J, Wang L X, Li Y G. First report of corn ear rot caused byFusarium asiaticum in China.Plant Dis, 2022.

[7] Cao Y Y, Ma J, Han S B, Hou M W, Wei X, Zhang X R, Zhang Z J, Sun S L, Ku L X, Tang J H, et al. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots.Plant Biotechnol J, 2023, 21: 1839–1859.

[8] Zhu M, Zhong T, Xu L, Guo C Y, Zhang X H, Liu Y L, Zhang Y, Li Y C, Xie Z J, Liu T T, et al. The ZmCPK39-ZmDi19-ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize.Nat Genet, 2024, 56: 2815–2826.

[9] Scott G E. Site of action of factors for resistance to Fusarium moniliforme in maize.Plant Dis, 1984, 68: 804.

[10] Giomi G M, Kreff E D, Iglesias J, Fauguel C M, Fernandez M, Oviedo M S, Presello D A. Quantitative trait loci forFusarium andGibberella ear rot resistance in Argentinian maize germplasm.Euphytica, 2016, 211: 287–294.

[11] Wen J, Shen Y Q, Xing Y X, Wang Z Y, Han S P, Li S J, Yang C M, Hao D Y, Zhang Y. QTL mapping ofFusarium ear rot resistance in maize.Plant Dis, 2021, 105: 558–565.

[12] Shang G F, Yu H, Yang J, Zeng Z, Hu Z Q. First report ofFusarium miscanthi causing ear rot on maize in China.Plant Dis, 2021, 105: 1565.

[13] Sanna M, Pugliese M, Gullino M L, Mezzalama M. First report ofTrichoderma afroharzianum causing seed rot on maize in Italy.Plant Dis, 2022, 106:1982.

[14] Chavéz-Díaz I F, Cruz-Cárdenas C I, Sandoval-Cancino G, Calvillo-Aguilar F F, Ruíz-Ramírez S, Blanco-Camarillo M, Rojas-Anaya E, Ramírez-Vega H, Arteaga-Garibay R I, Zelaya-Molina L X. Seedling growth promotion and potential biocontrol against phytopathogenicFusarium by native rhizosphericPseudomonas spp. strains from Amarillo Zamorano maize Landrace.Rhizosphere, 2022, 24: 100601.

[15] Ma P P, Liu E P, Zhang Z R, Li T, Zhou Z J, Yao W, Chen J F, Wu J Y, Xu Y F, Zhang H Y. Genetic variation in ZmWAX2 confers maize resistance toFusarium verticillioides.Plant Biotechnol J, 2023, 21: 1812–1826.

[16]贾娇,隋晶,张伟,孟玲敏,白雪,吴宏斌,王义生,张玉榕,苏前富.玉米禾谷镰孢穗腐病抗性鉴定接种方法比较.玉米科学, 2022, 30(5): 149–155.

Jia J, Sui J, Zhang W, Meng L M, Bai X, Wu H B, Wang Y S, Zhang Y R, Su Q F. Comparison of two inoculation methods for resistance ofFusarium graminearum ear rot.J Maize Sci, 2022, 30(5): 149–155 (in Chinese with English abstract).

[17]魏景超.真菌鉴定手册.上海:上海科学技术出版社, 1979.

Wei J C. Handbook of Fungal Identification. Shanghai: Shanghai Scientific & Technical Publishers, 1979 (in Chinese).

[18]薛德星,李美,高兴祥,李健.生防菌棘孢木霉的分离鉴定及生物学特性研究.山东农业科学, 2023, 55(10): 118–123.

Xue D X, Li M, Gao X X, Li J. Isolation, identification and biological characteristics ofTrichoderma asperellum GT30.Shandong Agric Sci, 2023, 55(10): 118–123 (in Chinese with English abstract).

[19]张成,廖文敏,薛鸣,陈迪,侯巨梅,刘铜.棘孢木霉DQ-1分生孢子固体发酵优化及其对4种作物幼苗生长的影响.中国生物防治学报, 2021, 37: 315–322.

Zhang C, Liao W M, Xue M, Chen D, Hou J M, Liu T. Optimization of solid substrate and conditions ofTrichoderma asperellum DQ-1 and effect on four crop seedlings growth.Chin J Biol Control, 2021, 37: 315–322 (in Chinese with English abstract).

[20]孙丽丽,曹传旺,薛绪亭,王志英,杜春艳.棘孢木霉可湿性粉剂研制及杀菌活性测定.北京林业大学学报, 2015, 37(6): 45–52.

Sun L L, Cao C W, Xue X T, Wang Z Y, Du C Y. Preparation and fungicidal bioactivity of wettable powder formulations ofTrichoderma asperellum.J Beijing For Univ, 2015, 37(6): 45–52 (in Chinese with English abstract).

[21]邹佳迅,范晓旭,宋福强.木霉(Trichodermaspp.)对植物土传病害生防机制的研究进展.大豆科学, 2017, 36: 970–977.

Zou J X, Fan X X, Song F Q. Biocontrol mechanism ofTrichoderma spp. against soilborn plant disease.Soybean Sci, 2017, 36: 970–977 (in Chinese with English abstract).

[22] Verma M, Brar S K, Tyagi R D, Surampalli R Y, Valéro J R. Antagonistic fungi,Trichoderma spp. panoply of biological control.Biochem Eng J, 2007, 37: 1–20.

[23] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics.Genome Res, 2009, 19: 1639–1645.

[24] Saha S, Bridges S, Magbanua Z V, Peterson D G. Empirical comparison ofab initio repeat finding programs.Nucleic Acids Res, 2008, 36: 2284–2294.

[25] Benson G. Tandem repeats finder: a program to analyze DNA sequences.Nucleic Acids Res, 1999, 27: 573–580.

[26]方中达.植病研究方法.第3版.北京:中国农业出版社, 1998.

Fang Z D. Research Methods of Plant Diseases. Beijing: China Agriculture Press, 1998 (in Chinese).

[27]李洪连,张新,袁红霞,李健强.玉米杂交种穗粒腐病原鉴定.植物保护学报, 1999, 26: 305–308.

Li H L, Zhang X, Yuan H X, Li J Q. Identification of pathogens causing ear and seed rot in corn hybrids.J Plant Prot, 1999, 26: 305–308 (in Chinese with English abstract).

[28]张小飞,邹成佳,崔丽娜,李晓,杨晓蓉,罗怀海.西南地区玉米穗腐病病原分离鉴定及接种方法研究.西南农业学报, 2012, 25: 2078–2082.

Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Identification of pathogen causing maize ear rot and inoculation technique inSouthwest China.Southwest China J Agric Sci, 2012, 25: 2078–2082 (in Chinese with English abstract).

[29] Li Y M, Tao X B, Yao L S, Tang S, Zhang X H, Tong L X, Liu Q L, Song T, Zhang D F, Cao Y Y,et al. qRfv2, a quantitative resistance locus against Fusarium ear rot in maize.Crop J, 2025,13:41–50.

[30]李生杰.浅析玉米病虫害防治.农家科技, 2019, 9(2): 111.

Li S J. Analysis on the prevention and control of corn diseases and pests.Nongjia Keji, 2019, 9(2): 111 (in Chinese).

[31]王兴娥,赵永田,刘荣,刘善灵,方双燕,韩昕,唐贵福,刘恋.木霉菌防治植物真菌病害的研究进展. 植物医学, 2024, 3(4):11–19.

Wang X E, Zhao Y T, Liu R, Liu S L, Fang S Y, Han X, Tang G F, Liu L. Research progress on prevention and control of plant fungal diseases withTrichoderma.Plant Health Med, 2024, 3(4): 11–19 (in Chinese with English abstract).

[32]那明慧,赵睿杰,陈晓旭,王作英,高增贵.玉米木霉穗腐病接种方法及玉米新品种的抗性分析.玉米科学, 2024, 32(2):162–167.

Na M H, Zhao R J, Chen X X, Wang Z Y, Gao Z G. Analysis of the inoculation method ofTrichoderma ear rot and the resistance of new maize varieties.J Maize Sci, 2024, 32(2): 162–167 (in Chinese with English abstract).

[1] 马军韬,张国民,辛爱华,张丽艳,邓凌韦,王永力,王英,任洋,宫秀杰,葛选良,杨秀峰. 不同遗传背景下稻瘟病菌致病性对比分析[J]. 作物学报, 2015, 41(12): 1791-1801.
[2] 马炳田;曲广林;黄文娟;林瑜凡;李仕贵. 大豆立枯丝核菌G蛋白ß亚基基因的克隆与分析[J]. 作物学报, 2009, 35(2): 370-374.
[3] 周益军;程兆榜;范永坚;王金生;陈毓苓;张文荟. 用不同类型的水稻鉴别品种鉴定江苏稻瘟病菌的致病性[J]. 作物学报, 2003, 29(02): 268-273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!