欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (06): 909-913.

• 研究论文 • 上一篇    下一篇

利用RAPD检测棉属种间亲缘关系的研究

吴玉香1,2;孙玉强1;陈崇乾1;祝水金1,*   

  1. 1 浙江大学农业与生物技术学院农学系,浙江杭州310029;2 山西农业大学农学院,山西太谷 030801
  • 收稿日期:2006-07-18 修回日期:1900-01-01 出版日期:2007-06-12 网络出版日期:2007-06-12
  • 通讯作者: 祝水金

Analysis of Genetic Relationship among Cotton Species (Gossypium spp.) by RAPD Marker

WU Yu-Xiang12,SUN Yu-Qiang1,CHEN Chong-Qian1,ZHU Shui-Jin1*   

  1. 1 Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, Zhejiang, China; 2 College of Agronomy, Shanxi agricultural University, Taigu 030801, Shanxi, China
  • Received:2006-07-18 Revised:1900-01-01 Published:2007-06-12 Published online:2007-06-12
  • Contact: ZHU Shui-Jin

摘要:

利用RAPD分子标记技术对棉属24个种进行了种质资源遗传多样性研究,并用棉属近缘植物杨叶肖槿为参考对照,旨在从DNA分子水平上进行亲缘关系鉴定和系统分类。在40个RAPD引物中筛选出多态性高的引物26条,多态性条带比率为2l.0%。使用NTSYS-pc(Version 2.00)软件,及Jaccard’s相似系数UPGMA法进行聚类,表明材料之间存在较大的遗传多样性,对20个二倍体棉种进行遗传相似系数比较,说明旱地棉和绿顶棉、澳洲棉之间的亲缘关系最远;对异源四倍体棉种与A和D染色体组棉种的遗传相似系数比较结果表明,异源四倍体棉种与A染色体组中的草棉和亚洲棉,相似系数都较高,说明在四倍体棉种演化过程中草棉和亚洲棉起的作用是等比例的;异源四倍体棉种与雷蒙地氏棉的遗传相似系数显著高于与其他参试的D染色体组棉种,证明异源四倍体棉种的D染色体组供体种为雷蒙地氏棉,并支持异源四倍体棉种单系统发育起源学说,A染色体亚组的草棉或亚洲棉与D染色体亚组的雷蒙地氏棉两者杂交和染色体加倍后形成原始的异源四倍体棉种,并随着地理和遗传的趋异而分化形成不同的四倍体棉种;RAPD分子标记聚类结果与传统的分类结果基本相符,说明RAPD分子标记资料可用于棉属植物的分类和系统发育研究。

关键词: 棉属, RAPD, 遗传多态性

Abstract:

There are 51 species in Gossypium including 5 tetraploid species (AD genome, 2n=52) and 46 diploid species which belong to the genome A, B, C, D, E, F, G, and K, respectively. Among them, there are 4 cultivated species including 2 tetraploid species, G. hirsutum and G. barbadense, and 2 diploid species belonging to genome A, G. arboreum and G. herbaceum. All the 5 tetraploid cotton species were testified to be AD allopolyploids, which was developed from the hybridization between two diploid species related to the genome A and genome D. Since their parental genome groups exist in diploid form, the question “how allopolyploid cotton formed” has stimulated discussion for more than 50 years. Furthermore, the species in Gossypium genus represent a vast resource of genetic multiplicity for the improvement of cultivated cotton. Research on genetic diversity and phylogenetic relationships among cultivated and wild cotton species is necessary for better understanding of cotton evolution. In order to determine the genetic diversity and relationships within a diverse collection in genus of Gossypium, 24 cotton species in gossypium including 20 diploid species representing 7 basic genome groups and 4 AD allotetraploid cotton accessions were assessed by RAPD, using their relative plant, T. populnea, as contrast. 26 of 40 RAPD primers were polymorphic, with the percentage of polymorphic bands of 21.0%,and the dendrograms were constructed by the Unweighted Pair Group Method of Arithmetic Average (UPGMA) based on Jaccard,s genetic similarity coefficients using the NTSYS-pc(Version 2.00). The results showed that there was an obvious genetic diversity among 25 species. Among 20 diploid cotton species, the genetic similarity coefficient between G. aridum and G. capitis-viridis was the lowest, so did between G. aridum and G. australe. Therefore, the genetic relationship between G. aridum and G. capitis-viridis / G. australe was the farthest. Genetic similarity coefficients between allotetraploid and the diploid species belonging to genome A and genome D showed that the A-genome donor was much similar to the present-day G. herbaceum and G.arboretum,and they played an equal role on the course of formation of allotetraploid cotton species. The highest genetic similarity coefficient between allotetraploid species and G. raimondii indicated that G. raimondii was the possible D genome donor of allotetraploid cotton species. According to the results of this experiment and others, the ancient allotetraploid cotton species might be formed by hybridization and chromosome doubling between the species related to G. arboreum or G. herbaceum and G. raimondii, then different allotetraploid cotton species were appeared by further geographical and genetical isolation and separating differentiation, which supported the evolution theory of sole origin of allotetraploid cotton species. In addition, this result illuminated that the RAPD is an useful method in study of genetic diversity and pedigree classification of cotton resources at the genomic level, and the clustering analysis based on RAPD data was coincident with the results obtained from the traditional classification.

Key words: Gossypium, RAPD, Genetic diversity

[1] 刘绍杰,迟琳,谢文钢,韩楠,陈应会,何鑫,唐茜. 古蔺牛皮茶种质资源遗传多态性[J]. 作物学报, 2014, 40(12): 2118-2127.
[2] 赵法茂,蔡瑞国,毕建杰,肖军,王宪泽. 小麦籽粒淀粉分支酶同种型SBE IIb 的亚细胞定位及遗传多样性[J]. 作物学报, 2009, 35(5): 952-957.
[3] 唐怀君,殷贵鸿,夏先春,冯建军,曲延英,何中虎. 1BL·1RS特异性分子标记的筛选及其对不同来源小麦品种1RS易位染色体的鉴定[J]. 作物学报, 2009, 35(11): 2107-2115.
[4] 王长有;吉万全;张改生;王秋英;薛秀庄. 普通小麦与Elymus rectisetus异附加系的分子细胞遗传学鉴定[J]. 作物学报, 2006, 32(12): 1898-1901.
[5] 庞朝友;杜雄明;马峙英. 棉属种间杂交基因渐渗系SSR标记及其表型性状的聚类分析[J]. 作物学报, 2006, 32(09): 1371-1378.
[6] 邸宏; 陈伊里;金黎平. RAPD和AFLP标记分析中国马铃薯主要品种的遗传多样性[J]. 作物学报, 2006, 32(06): 899-904.
[7] 朱必凤;朱友林;吴成钢;廖朝晖;黎书伟;刘主;彭凌;郭克婷;刘安玲. 对除草剂敏感致死水稻bel基因的RAPD和SCAR分子标记[J]. 作物学报, 2006, 32(04): 618-624.
[8] 孙万仓;官春云;孟亚雄;刘自刚;张涛;张金文;陈社员;范惠玲;王保成;邵登魁;武军艳;燕尼;朱惠霞. 中国芸芥形态特征特性及类型研究[J]. 作物学报, 2006, 32(03): 390-396.
[9] 贺学勤;刘庆昌;翟红;王玉萍. 用RAPD、ISSR和AFLP标记分析系谱关系明确的甘薯品种的亲缘关系[J]. 作物学报, 2005, 31(10): 1300-1304.
[10] 林小虎;王黎明;李兴锋;陆文辉;赵逢涛;李文才;高居荣;王洪刚. 抗白粉病八倍体小偃麦和双体异附加系的鉴定[J]. 作物学报, 2005, 31(08): 1035-1040.
[11] 徐如宏;任明见;黄世全;杨英仓;张庆勤. 小麦抗病种质贵农775中抗白粉病基因的RAPD标记[J]. 作物学报, 2005, 31(02): 243-247.
[12] 陆文辉;林小虎;李兴峰;王黎明;陈寅初;王洪刚. 抗条锈小滨麦易位系的鉴定[J]. 作物学报, 2005, 31(01): 88-91.
[13] 刘平武;杨光圣. 甘蓝型油菜人工合成种遗传多样性分析[J]. 作物学报, 2004, 30(12): 1266-1273.
[14] 马翎健;何蓓如;宋喜悦;胡银岗. 小麦光敏雄性不育基因的遗传分析及RAPD标记[J]. 作物学报, 2004, 30(09): 912-915.
[15] 金文林;文自翔;濮绍京;赵波. 应用RAPD标记检测小豆种质资源的遗传多样性初探[J]. 作物学报, 2004, 30(07): 686-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!