作物学报 ›› 2009, Vol. 35 ›› Issue (3): 530-534.doi: 10.3724/SP.J.1006.2009.00530
赵立群1;刘玉良1;孙宝腾2;王彩琴3
ZHAO Li-Qun1;LIU YU-Liang1;SUN Bao-Teng2;WANG Cai-Qin3
摘要:
[1] Chen S, Wang S, Altman A, Huttermann A. Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol, 1997, 17: 797–803 [2] Anbar M. Nitric oxide: a synchronizing chemical messenger. Experientia, 1995, 51: 481–490 [3] Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory function. Trends Plant Sci, 2005, 10: 195–200 [4] Pedroso M C, Durzan D J. Effects of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot, 2000, 86: 983–994 [5] Delledonne M, Xia Y J, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585–588 [6] Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissue. Planta, 1999, 208: 337–344 [7] Mata C G, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol, 2001, 126: 1196–1204 [8] Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol, 2004, 134:849-857 [9] Li H, Zhang D Y. Morphological characteristics and growth redundancy of spring wheat root system in semi-arid regions. J Appl Ecol, 1999, 10: 26–30 [10] White P R. The Cultivation of Animal and Plant Cells. New York: Ronald Press, 1963. pp 57–77 [11] Murphy M E, Noack E. Nitric oxide assay using hemoglobin method. Methods Enzymol, 1994, 233: 240–250 [12] Song L, Ding W, Zhao M, Sun B, Zhang L. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci, 2006, 171: 449–458 [13] Sairam R K, Srivastava G C. Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci, 2002, 162: 897–904 [14] Chen S, Li J, Fritz E, Wang S, Huttermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes and under increasing salt stress. For Ecol Manag, 2002, 168: 217–230 [15] Qiu Q S, Su X F. The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+-ATPase from wheat roots. Aust J Plant Physiol, 1998, 25: 923–928 [16] Zhang L, Deng X. Advances in studies on physiology and biochemistry of wheat drought resistance. Agric Res Arid Areas, 2000, 18: 87–92 [17] Zhu J K. Plant and salt tolerance. Trends Plant Sci, 2001, 6: 66–71 [18] Qiu Q-S (邱全胜). Influence of K+ on the coupling between ATP hydrolysis and proton transport by the plasma membrane H+-ATPase from soybean hypocotyls. Acta Bot Sin (植物学报), 1999, 41(9): 962–966 (in Chinese with English abstract) [19] Gupta A S, Berkowitz G A, Pier P A. Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiol, 1989, 89: 1358–1365 [20] Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B. Ion channels in plant signaling. Cell Mol Life Sci, 1999, 55: 183–203 [21] Monroy A F, Sangwan V, Dhindsa R S. Low temperature signal transduction during cold acclimation: protein phosphates 2A as an early target for cold-inactivation. Plant J, 1998, 13: 653–660 [22] Michelet B, Boutry M. The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol, 1995, 108: 1–6 |
[1] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[2] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[3] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[4] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[5] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[6] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[7] | 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480. |
[8] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[9] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[10] | 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770. |
[11] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[12] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
[13] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
[14] | 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603. |
[15] | 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399. |
|