欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 530-534.doi: 10.3724/SP.J.1006.2009.00530

• 耕作栽培·生理生化 • 上一篇    下一篇

干旱胁迫下一氧化氮对小麦离体根尖离子吸收的影响

赵立群1;刘玉良1;孙宝腾2;王彩琴3   

  1. 1河北师范大学生命科学学院,河北石家庄050016;2南昌大学生命科学学院,江西南昌330031;3甘肃省人民医院药剂科,甘肃兰州730000
  • 收稿日期:2008-09-26 修回日期:2008-10-25 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB100101);教育部留学回国人员科研启动基金(2008890)资助

Effect of Nitric Oxide on Ions Absorption in Excised Root Tips of wheat Seedlings under Drought Stress

ZHAO Li-Qun1;LIU YU-Liang1;SUN Bao-Teng2;WANG Cai-Qin3   

  1. 1School of Life Sciences, Hebei Normal University,Shijiazhuang 050016,China;2School of Life Sciences, Nanchang University, Nanchang 330031,China;3 Department of Pharmacy, People's Hospital of Gansu Province, Lanzhou 730000,China
  • Received:2008-09-26 Revised:2008-10-25 Published:2009-03-12 Published online:2009-01-16

摘要:

为阐明干旱胁迫下一氧化氮(NO)对植物的保护机制利用干旱敏感性不同的3个小麦(Triticum aestivum L.)品种的离体根尖比较了NO对干旱胁迫的响应及其对离子吸收的影响。在干旱胁迫下, 耐旱品种陇春8139根尖中大量产生NO, K+Ca2+被大量吸收, Cl-1被排出体外, 质膜H+-ATPase活性升高; 而干旱敏感品种甘麦8和定西24的根尖中NO、离子含量和质膜H+-ATPase活性的变化呈相反趋势。NO供体硝普纳(SNP)处理使3个品种根尖中的K+Ca2+含量增加,Cl-1含量下降,并能提高质膜H+-ATPase活力;NOS抑制剂Nω-nitro-L-arginine(LNNA)NO清除剂2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl- 3-oxide(PTIO)能够逆转这一效果Na+含量在所有处理下都没有明显变化。试验结果证明,NO能够通过调节质膜H+-ATPase活力影响植物对离子的选择吸收,从而提高耐旱性。

关键词: 干旱胁迫, 离子吸收, 一氧化氮, 质膜H+-ATPase

Abstract:

Longchun 8139 is a wheat (Triticum aestivum L.) cultivar grown in Dingsxi in Northwest China, which has stably tolerance characteristics to drought stress in morphology, physiology, and genetics. To explain the protection mechanism of nitric oxide to plants under drought stress, Longchun 8139 and two drought-sensitive cultivars Ganmai 8 and Dingxi 24 were used for testing the adaptation to drought stress. The excised root tips (2±0.02 cm) from the seedlings were treated with 20% polyethylene glycol (PEG)-6000 to simulate drought stress. In addition, the NO content in root tips was adjusted with 0.2 mmol L-1sodium nitroprusside (SNP, as NO donor), and 0.3 mmol L-1 Nω-nitro-L-arginine (LNNA, a NO synthase inhibitor), and 0.4 mmol L-1 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO, a specific NO scavenger) adding in culture medium. In the root tips of Longchun 8139, the activity of NO synthase and NO content increased remarkably, the chloride (Cl-) content decreased, whereas, the contents of calcium (Ca2+) and potassium (K+) increased, simultaneously, the activity of plasma membrane H+-ATPase was activated under drought stress. However, in the root tips of Ganmai 8 and Dingxi 24, the changing patterns of the parameters above were opposite. When applying SNP, changes of the contents of Ca2+ and K+, as well as the activity of plasma membrane H+-ATPase were observed similar to those induced by PEG in drought-tolerant cultivar, Longchun 8139. These changes in response to drought stress could be counteracted, such as, the promotion of Cl- content, the reductions of Ca2+ and K+ content, and the decrease of activity of plasma membrane H+-ATPase, if LNNA and PTIO were added in the culture medium. As to Na+ content, no obvious variations were observed among all treatments. The results indicate that NO acts as the second messenger in inducing drought resistance through influencing ions absorption, which is dependent on the increased activity of plasma membrane H+-ATPase.

Key words: Drought stress, Ion absorption, Nitric oxide, Plasma membrane H+-ATPase

[1] Chen S, Wang S, Altman A, Huttermann A. Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol, 1997, 17: 797–803
[2] Anbar M. Nitric oxide: a synchronizing chemical messenger. Experientia, 1995, 51: 481–490
[3] Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory function. Trends Plant Sci, 2005, 10: 195–200
[4] Pedroso M C, Durzan D J. Effects of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot, 2000, 86: 983–994
[5] Delledonne M, Xia Y J, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585–588
[6] Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissue. Planta, 1999, 208: 337–344
[7] Mata C G, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol, 2001, 126: 1196–1204
[8] Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol, 2004, 134:849-857
[9] Li H, Zhang D Y. Morphological characteristics and growth redundancy of spring wheat root system in semi-arid regions. J Appl Ecol, 1999, 10: 26–30
[10] White P R. The Cultivation of Animal and Plant Cells. New York: Ronald Press, 1963. pp 57–77
[11] Murphy M E, Noack E. Nitric oxide assay using hemoglobin method. Methods Enzymol, 1994, 233: 240–250
[12] Song L, Ding W, Zhao M, Sun B, Zhang L. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci, 2006, 171: 449–458
[13] Sairam R K, Srivastava G C. Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci, 2002, 162: 897–904
[14] Chen S, Li J, Fritz E, Wang S, Huttermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes and under increasing salt stress. For Ecol Manag, 2002, 168: 217–230
[15] Qiu Q S, Su X F. The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+-ATPase from wheat roots. Aust J Plant Physiol, 1998, 25: 923–928
[16] Zhang L, Deng X. Advances in studies on physiology and biochemistry of wheat drought resistance. Agric Res Arid Areas, 2000, 18: 87–92
[17] Zhu J K. Plant and salt tolerance. Trends Plant Sci, 2001, 6: 66–71
[18] Qiu Q-S (邱全胜). Influence of K+ on the coupling between ATP hydrolysis and proton transport by the plasma membrane H+-ATPase from soybean hypocotyls. Acta Bot Sin (植物学报), 1999, 41(9): 962–966 (in Chinese with English abstract)
[19] Gupta A S, Berkowitz G A, Pier P A. Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiol, 1989, 89: 1358–1365
[20] Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B. Ion channels in plant signaling. Cell Mol Life Sci, 1999, 55: 183–203
[21] Monroy A F, Sangwan V, Dhindsa R S. Low temperature signal transduction during cold acclimation: protein phosphates 2A as an early target for cold-inactivation. Plant J, 1998, 13: 653–660
[22] Michelet B, Boutry M. The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol, 1995, 108: 1–6
[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[3] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[4] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[5] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[6] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[7] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[8] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[9] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[10] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[11] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[12] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[13] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[14] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[15] 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!