欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1405-1409.doi: 10.3724/SP.J.1006.2009.01405

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻黄绿叶基因YGL4的遗传分析和分子定位

刘梦梦,桑贤春,凌英华,杜鹏,赵芳明,杨正林,何光华*   

  1. 西南大学水稻研究所/农业部西南作物遗传改良重点实验室,重庆400716
  • 收稿日期:2008-11-22 修回日期:2009-02-17 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 何光华,E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金(30871495),教育部新世纪优秀人才计划项目,重庆市杰出青年基金项目(2008BA1033)资助。

Genetic Analysis and Molecular Mapping of a Yellow green Leaf Gene(YGL4) in Rice (Oryza sativa L.)

LIU Meng-Meng,SANG Xian-Chun,LING Ying-Hua,DU Peng,ZHAO Fang-Ming,YANG Zheng-Lin,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Key Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Chongqing 400716, China
  • Received:2008-11-22 Revised:2009-02-17 Published:2009-08-12 Published online:2009-06-10
  • Contact: HE Guang-Hua,E-mail: hegh@swu.edu.cn

摘要:

通过EMS诱变恢复系缙恢10号,获得了一个稳定遗传的全生育期黄绿化叶色突变体。其叶绿素总含量稳定在2.01~2.28 mg g-1之间,仅有对照的38.2%~50.5%。与对照相比,黄绿叶突变体的有效穗和株高显著下降,而主穗长、一次枝梗数、主穗实粒数、结实率、千粒重则无明显差异。遗传分析表明该性状受一对隐性核基因控制,命名为YGL4。利用微卫星标记将YGL4定位于10染色体微卫星标记RM3123RM590之间,分别距其7.6 cM7.8 cM。在两标记间进一步设计SSR引物,将该黄绿叶基因定位于RM1162RM7093之间,分别距其1.8 cM4.0 cM。为该YGL4基因的分子标记辅助选择育种和图位克隆奠定了基础。

关键词: 水稻(Oryza sativa L.), 黄绿叶, 遗传分析, 分子定位

Abstract:

A leaf color mutant was obtained by EMS treating seeds of restorer line Jinhui 10, this mutation showed complete yellow green leaves during the life, and could be regenerated and inherited stably according to the observation of 5 generations. The content of its total chlorophyll ranged from 2.01 to 2.28 mg g-1, which was only 38.2% to 50.5% of the original parent. Compared with the original parent, the mutation had no significant difference in the traits of main panicle length, first branch number, filled grain number of main panicle, seed setting rate and 1000-grain weight, except the effective panicle and plant height which were decreased significantly. Genetic analysis of F2 populations confirmed that the mutational character was controlled by a single recessive nuclear gene, temporarily designated as YGL4. The gene was mapped between two microsatellite markers RM3123 and RM590, with genetic distances of 7.6 cM and 7.8 cM to the two markers respectively. New microsatellite markers were designed between RM3123 and RM590, and the YGL4 gene was final mapped between RM1162 and RM7093, with genetic distances of 1.8 cM and 4.0 cM to each of them respectively. This result provided a foundation of molecular marker-assisted breeding and map-based cloning of YGL4 gene.

Key words: Rice(Oryza sativa L.), Yellow green Leaf, Genetic Analysis, Molecular Mapping

[1] Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47-56

[2] Mochizuki N, Brusslan J A, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5(GUN5) mutant reveals the involvement of mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA, 2001, 98: 2053-2058

[3] Robert M L, Jose M A, Joseph R E. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902-906

[4] Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: Maize as a model system. Trends Plant Sci, 2004, 9: 293-301

[5] Beale S. Green genes gleaned. Trends Plant Sci, 2005, 10: 309-312

[6] Dong F-G(董凤高), Zhu X-D(朱旭东), Xiong Z-M(熊阵民), Cheng X-H(程式华), Sun Z-X(孙宗修), Min S-K(闵绍楷). Breeding of a photo-thermoperiod sensitive genie male sterile indica rice with a pale-green-leaf marker. Chin Rice Sci (中国水稻科学), 1995, 9(2): 65-70 (in Chinese with English abstract)

[7] Wu D X, Shu Q Y, Xia Y W. In vitro mutagenesis induced novel thermo photoperiod sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica, 2002, 123: 195-202

[8] Yutaka S, Ryouhei M, Minoru N, Hiroyasu Y, Makoto K.Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA, 2007, 104: 14169-14174

[9] Gong H-B(龚红兵), Chen L-M (陈亮明), Diao L-P(刁立平), Sheng S-L(盛生兰), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Dai X-B(戴新宾), Lu W(陆巍), Xu X-M(许晓明). Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Sci Agric Sin (中国农业科学), 2001, 34(6): 686-689 (in Chinese with English abstract)

[10] ABE T, Matsuyama T, Sekido S, Yamaguchi I, Yoshida S, Kameya T. Chlorophyll deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J Radiat Res, 2002, 43: 157-161

[11] Wang C, He B, Xun M, Wan J. Tagging and mapping of a gene controlling yellowish-green leaf. Rice Genet Newslett, 2003, 20: 35

[12] Wang J(王军), Wang B-H(王宝和), Zhou L-H(周丽慧), Xu J-F(徐洁芬), Gu M-H(顾铭洪), Liang G-H(梁国华). Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin Rice Sci (中国水稻科学), 2006, 20: 455-459(in Chinese with English abstract)

[13] Huang X-Q(黄晓群), Wang P-R(王平荣), Zhao H-X(赵海新), Dong X-J(邓晓建). Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Chin Rice Sci (中国水稻科学), 2007, 21(4): 355-359 (in Chinese with English abstract)

[14] Jung K H, Hur J, Ryu C H,Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472

[15] Lee S, Kim J H, Enu S Y, Lee C H, Hirochika H, Gynheung A. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805-818

[16] Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40

[17] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol, 1987, 48: 350-382

[18] Wang G-L(王关林), Fang H-Y(方宏筠). Plant Gene Engineering (植物基因工程), 2nd edn. Beijing: Science Press, 2002. pp 742-744 (in Chinese)

[19] Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705-707 (in Chinese with English abstract)

[20] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 259: 297-607

[21] Ayumi T, Ryouichi T. Chlorophyll metabolism. Curr Opin Plant Biol, 2006, 9: 248-255

[22] Hirochika H, Guiderdoni E, An G, Hsing Y, Moo Y E, Han C D, Upadhyaya N, Ramachandran S, Zhang Q F, Pereira A, Sundaresan V, Heilenug. Rice mutant resources for gene discovery. Plant Mol Biol, 2004, 54: 325-334

[23] He B(何冰), Liu L-L(刘玲珑), Zhang W-W(张文伟), Wan J-M(万建民). Plant leaf color mutants. Plant Physiol Commun (植物生理学通讯), 2006, 42(1): 1-9 (in Chinese with English abstract)

[24] Dong Y J, Dong W Q, Shi S Y, Jin Q. Identification and genetic analysis of a thermo sensitive seeding colour mutant in rice. Breed Sci, 2001, 51: 1-4

[25] Liu Y-J(刘友杰) Chlorotic mutants induced by laser He-Ne and its genetic expression. Appl Laser (应用激光), 1988, 8(4): 177-187 (in Chinese with English abstract)

[26] Iwata N, Satoh H, Omura T. Studies on the trisomics in rice plants (Oryza sativa L.): VII. On some maker genes located on chromosome 2 and their sequence on the linkage map. J Fac Agric Kyushu Univ, 1984, 29: 139-144

[27] Iwata N, Omura T. Studies on the trisomics in rice plants (Oryza sativa L.): III. Relation between trisomics and genetic linkage groups. Jpn J Breed, 1975, 25: 363-368

[28] Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice chlorine-1 and chlorine-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 6: 325-337

[29] Morita R, Kusaba M, Yamaguchi H, Amano E, Miyao A, Hirochika H, Nishimura M. Characterization of chlorophyllide a oxygenase (CAO) in rice. Breed Sci, 2005, 55: 361-364

[30] Koumoto Y, Shimada T, Kondo M, Nishimura I H, Nishimura M. Chloroplasts Have a Novel Cpn10 in Addition to Cpn20 as Co-chaperonins in Arabidopsis thaliana. J Biol Chem, 2001, 276: 29688-29694
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[4] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[5] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[6] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[7] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[8] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[9] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[10] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
[11] 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195.
[12] 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656.
[13] 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定[J]. 作物学报, 2018, 44(04): 614-619.
[14] 张天雨,周春雷,刘喜,孙爱伶,曹鹏辉,Thanhliem NGUYEN,田云录,翟虎渠,江玲. 一个水稻温敏黄化突变体的表型分析和基因定位[J]. 作物学报, 2017, 43(10): 1426-1433.
[15] 李自壮,徐乾坤,余海平,周亭亭,薛大伟,曾大力,郭龙彪,钱前,任德勇. 水稻淡黄叶矮化突变体yld的遗传分析及基因定位[J]. 作物学报, 2017, 43(04): 522-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!