作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1738-1743.doi: 10.3724/SP.J.1006.2009.01738
张艳1,王彦飞1,陈新民1,王德森1,Humieres G D2,冯建军4,何中虎1,3,*
ZHANG Yan1,WANG Yan-Fei1,CHEN Xin-Min1,WANG De-Sen1,Humieres G D2,FENG Jian-Jun4,HE Zhong-Hu13*
摘要:
根据仪器测定的面粉品质特性预测面包烘烤品质是进行小麦品质改良的重要方法。法国肖邦公司(Chopin Technologies, France)最新推出的Mixolab分析仪可以同时测定面粉加水后恒温揉混及面团升温后蛋白质弱化和淀粉糊化特性,明确其与现有相似仪器如粉质仪和拉伸仪等的关系对小麦品质测试具有重要意义。利用 Mixolab分析仪、粉质仪、拉伸仪测定了41份高代育种品系的有关参数和面包烘烤品质,并分析了Mixolab与粉质仪和拉伸仪相关参数的关系及预测面包品质的可靠性。结果表明,可以用Mixolab的形成时间、稳定时间、面团受热后蛋白质弱化值(C2值)和到达淀粉糊化反弹值的时间(C4时间)来预测粉质仪和拉伸仪的品质参数,可解释其变异的74%~90%;可以直接用C2值预测面包体积、外观、结构和总分,决定系数分别为52%、73%、70%和68%;预测面包质地和弹性的参数不仅包含Mixolab稳定时间和C2值,还有表示淀粉糊化特性的C3时间、C4和C5值及C5温度。用Mixolab分析仪既可以了解蛋白质特性和面包烘烤品质的关系,又明确了淀粉品质对面包品质的显著影响,在品质测试中有其独特之处。Mixolab、粉质仪和拉伸仪各参数对预测小麦面包体积、内部质地结构等烘烤品质性状的贡献不同。
[1] Morris C F, Rose S P. Wheat. In: Henry R J, Kettlewell P S, eds. Cereal Grain Quality. New York: Chapman and Hall, 1996. pp 3-54 [2] Chen F, He Z, Chen D S, Zhang C L, Zhang Y, Xia X C. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. J Cereal Sci, 2007, 45: 59-66 [3] Dowell F E, Maghirang E B, Pierce R O, Lookhart G L, Bean S R, Xie F, Caley M S, Wilson J D, Seabourn B W, Ram M S, Park S H, Chung O K. Relationship of bread quality to kernel, flour, and dough properties. Cereal Chem, 2008, 85: 82-91 [4] Chung O K, Ohm J B, Caley M S, Seabourn B W. Prediction of baking characteristics of hard winter wheat flours using computer-analyzed mixograph parameters. Cereal Chem, 2001, 78: 493-497 [5] Wilson J D, Bechtel D B, Wilson G W T, Seib P A. Bread quality of spelt wheat and its starch. Cereal Chem, 2008, 85: 629-638 [6] Kusunose C, Fujii T, Matsumoto H. Role of starch granules in controlling expansion of dough during baking. Cereal Chem, 1999, 76: 920-924 [7] Park S H, Chung O K, Seib P A. Effects of varying weight ratios of large and small wheat starch granules on experimental straight-dough bread. Cereal Chem, 2005, 82: 166-172 [8] Lee K M, Shroyer J P, Herrman T J, Lingenfelser J. Blending hard white wheat to improve grain yield and end-use performances. Crop Sci, 2006, 46: 1124-1129 [9] Andersson R, Hamalainen M, Aman P. Predictive modeling of the bread-making performance and dough properties of wheat. J Cereal Sci, 1994, 20: 129-138 [10] Bonet A, Blaszczak W, Rosell C M. Formation of homopolymers and heteropolymers between wheat flour and several protein sources by transglutaminase-catalyzed cross-linking. Cereal Chem, 2006, 83: 655-662 [11] Colllar C, Bollain C, Rosell C M. Rheological behaviour of formulated bread doughs during mixing and heating. Food Sci Technol Intl, 2007, 13: 99 [12] Ozturk S, Kahraman K, Tiftik B, Koksel H. Predicting the cookie quality of flours by using Mixolab. Eur Food Res Technol, 2008, 227: 1549-1554 [13] Kahraman K, Sakiyan O, Ozturk S, Koksel H, Sumnu G, Dubat A. Utilization of Mixolab to predict the suitability of flours in terms of cake quality. Eur Food Res Technol, 2008, 227: 565-570 [14] He Z H, Yang J, Zhang Y, Quail K J, Peña R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257-267 [15] Puppo M C, Calvelo A, Anon M C. Physicochemical and rheological characterization of wheat flour dough. Cereal Chem, 2005, 82: 173-181 [16] Gan Z, Ellis P R, Schofield J D. Mini-review: gas cell stabilization and gas retention in wheat bread dough. J Cereal Sci, 1995, 21: 215-230 [17] Mills E N C, Wilde P J, Salt L J, Skeggs P. Bubble formation and stabilization in bread dough. Food Bioprod Proc, 2003, 81: 189-193 [18] Graybosch R, Peterson J C, Moore K J, Stearns M, Grant D L. Comparative effects of wheat flour protein, lipid and pentosan composition in relation to baking and milling quality. Cereal Chem, 1993, 70: 95-101 [19] Janssen A M, Vliet T, Vereijken J M. Fundamental and empirical rheological behavior of wheat flour doughs and comparison with bread making performance. J Cereal Sci, 1996, 23: 43-54 |
[1] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[2] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
[3] | 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840. |
[4] | 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447. |
[5] | 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705. |
[6] | 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267. |
[7] | 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953. |
[8] | 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838. |
[9] | 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495. |
[10] | 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500. |
[11] | 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142. |
[12] | 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159. |
[13] | 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831. |
[14] | 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713. |
[15] | 岳爱琴,李昂,毛新国,昌小平,柳玉平,李润植,景蕊莲. 小麦果聚糖合成酶基因6-SFT-D多态性及其与6-SFT-A2的累加效应[J]. 作物学报, 2016, 42(01): 11-18. |
|