作物学报 ›› 2010, Vol. 36 ›› Issue (3): 496-501.doi: 10.3724/SP.J.1006.2010.00496
Stephen J HERBERT1,刘晓冰2,**,Gurkirat BAATH1,金剑2,张秋英2
Stephen J HERBERT1, LIU Xiao-Bing2,**,Gurkirat BAATH1,JIN Jian2,ZHANG Qiu-Ying2,Masoud HASHEM1
摘要:
大豆产量潜力受到基因型和环境条件的制约。一种基因型的密度、植株分布决定其对太阳辐射、水分和养分的利用,进而高产的形成。当群体生长所需外界要素之一不能满足时,植株间形成竞争。产量的区域间及年际间差异与这种株间竞争关系密切,最终表现为单位面积内一个或多个产量构成因子的差异,如株荚数、荚粒数、或单粒重(籽粒大小)。本研究探讨籽粒大小在调节不同密度、行距条件下产量差异及年际间产量差异的作用。多点试验表明,籽粒大小在不同节位上及不同籽粒数的荚间差异不大。然而在2粒或3粒荚内,荚基部粒比中部及顶部粒小10%,而且子叶细胞体积差异不大。在改变源库、增强光照或遮阴条件下,籽粒大小发生变化。籽粒大小与子叶细胞数相关。籽粒大小是可塑的,但即使底部节位荚较顶部节位提前15~20 d鼓粒,籽粒大小在所有节位间差异不大,所以籽粒大小与子叶细胞数的关系仍值得探讨。
[1] Taylor H M, Mason W K, Bennie A T P, Rowse H R. Response of soybeans to two row spacing and two soil water levels: I. An analysis of biomass accumulation, canopy development, solar radiation interception and components of seed yield. Field Crops Res, 1982, 5: 1–14 [2] Willcott J, Herbert S J, Liu Z Y. Leaf area display and light interception in short season soybeans. Field Crops Res, 1984, 9: 173–182 [3] Myers R L, Brun W A, Brenner M L. Effect of raceme-localized supplemental light on soybean reproductive abscission. Crop Sci, 1987, 27: 273–277 [4] Board J E, Harvelle B G. Explanations for greater light interception in narrow vs. wide-row soybean. Crop Sci, 1992, 32: 198–202 [5] Herbert S J, Litchfield G V. Partitioning soybean seed yield components. Crop Sci, 1982, 22: 1074–1079 [6] Swank J C, Egli D B, Pfeiffer T W. Seed growth characteristics of soybean genotypes differing in duration of seed fill. Crop Sci, 1987, 27: 85–89 [7] Berlyn G P, Miksche J P. Botanical Microtechnique and Cytochemistry. Ames, IA: Iowa State University Press, 1976 [8] Reinert J, Yeoman M M. Plant Cell and Tissue Culture. New York: Springer-Verlag, 1982 [9] Mathew J P, Herbert S J, Zhang S H, Rautenkranz A F, Litchfield G V. Differential response of soybean yield components to the timing of light enrichment. Agron J, 2000, 92: 1156–1161 [10] Egli D B. Seed growth and development in soybean. Buenos Aries, Argentina: World Soybean Conference IV. 1989. pp 256–261 [11] Egli D B, Fraser J, Legget J E, Poneleit C G. Control of seed growth in soybeans [Glycine max (L.) Merrill]. Ann Bot, 1981, 48: 171–176 [12] Guldan S J, Brun W A. Relationship of cotyledon cell number and seed respiration to soybean seed growth. Crop Sci, 1985, 25: 815–819 [13] Hirshfield K M, Flannery R L, Dale J. Cotyledon cell number and cell size in relation to seed size and seed yield of soybean. Plant Physiol Biochem, 1992, 31: 395–400 [14] Davis L A, Addicott F T. Abscisic acid: Correlation with abscission and with development in the cotton fruit. Plant Physiol, 1972, 49: 644–648 [15] Dunphy E J, Hanway J J, Green D E. Soybean yield in relation to days between specific development stages. Agron J, 1979, 71: 917–920 [16] Liu X B, Herbert S J, Hashemi A M, Litchfield G V, Zhang Q Y. Yield and yield components response of old and new soybean cultivars to source-sink manipulation. Plant Soil Environ, 2006, 52: 150–158 [17] Egli D B, Orf J H, Pfeiffer T W. Genotypic variation for duration of seed filling in soybean. Crop Sci, 1984, 24: 587–592 [18] Egli D B, Guffy R D, Meckel W, Legget J, E. The effect of source-sink alterations on soybean seed growth. Ann Bot, 1985, 55: 395–402 [19] Egli D B, Ramseur E L, Yu Z W, Sullivan C H. Source-sink alterations affect the number of cells in soybean cotyledons. Crop Sci, 1989, 29: 732–735 [20] Herbert S J, Litchfield G V, Putnam D H. Seed size variation in short season soybean. Mass Agron Res Rpt, 1985, 7: 8–10 |
[1] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[2] | 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160. |
[3] | 陈春侠**,陆明洋**,尚爱兰,王玉民,席章营*. 基于单片段代换系的玉米百粒重QTL分析[J]. 作物学报, 2013, 39(09): 1562-1568. |
[4] | 闫宁,谢尚潜,耿青春,徐宇,李广军,刘兵,汪霞,李其刚,章元明. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础[J]. 作物学报, 2013, 39(02): 258-268. |
[5] | 李军营;徐长亮; 谢辉; 朱建国;蔡庆生. CO2浓度升高加快了水稻灌浆前期籽粒的生长发育进程[J]. 作物学报, 2006, 32(06): 905-910. |
|