欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 486-495.doi: 10.3724/SP.J.1006.2010.00486

• 耕作栽培·生理生化 • 上一篇    下一篇

水旱条件下小麦不同抗旱性品种籽粒蛋白质积累的差异及施氮量的调控效应

孙敏,郭平毅*,高志强,王鹏,时静,苗果园   

  1. 山西农业大学农学院,山西太谷030801
  • 收稿日期:2009-10-26 修回日期:2010-01-03 出版日期:2010-03-12 网络出版日期:2010-02-04
  • 通讯作者: 郭平毅, E-mail: pyguo126@126.com
  • 基金资助:

    本研究由国家科技攻关计划项目(2001BA902B02),教育部科学技术研究重点项目(2006019)和山西农大青年教师创新基金(2008005)资助。

Protein Accumulation in Grains of Wheat Cultivars Differing in Drought Tolerance and Its Regulation by Nitrogen Application Amount under Irrigated and Dryland Conditions

SUN Min,GUO Ping-Yi*,GAO Zhi-Qiang,WANG Peng,SHI Jing,MIAO Guo-Yuan   

  1. College of Agronomy,Shanxi Agricultural University,Taigu 030801,China
  • Received:2009-10-26 Revised:2010-01-03 Published:2010-03-12 Published online:2010-02-04
  • Contact: GUO Ping-Yi, E-mail: pyguo126@126.com

摘要: 在水、旱两栽培条件下比较了农大189 (不抗旱品种)和晋麦47 (抗旱品种)的籽粒蛋白质积累及施氮的调控效应。与灌溉条件相比,旱地栽培提高了籽粒清蛋白、醇溶蛋白、谷蛋白、总蛋白含量及谷/醇比,降低了球蛋白含量。旱作对农大189的籽粒蛋白质组分含量有显著影响,而对晋麦47籽粒球蛋白、醇溶蛋白、总蛋白、谷/醇比的影响不显著。旱作降低了籽粒谷氨酰胺合成酶(GS)、籽粒谷氨酸合酶(GOGAT)、籽粒谷丙转氨酶(GPT)、旗叶谷氨酰胺合成酶(GS)、旗叶谷氨酸合酶(GOGAT)活性,且影响了籽粒GPT活性的变化趋势。旱作对蛋白质合成有关酶活性的影响表现为农大189大于晋麦47。随着施氮量的增加,籽粒蛋白质及其组分含量表现为增加趋势,且施氮的调控效应对晋麦47大于对农大189。不同栽培条件下各处理的籽粒GS、籽粒GOGAT、籽粒GPT、旗叶GOGAT活性与籽粒蛋白质产量呈显著正相关,而与籽粒蛋白质含量无显著相关。两品种旗叶GS活性与蛋白质产量的相关性不同。总之,抗旱品种的籽粒蛋白质积累受水分条件影响小于不抗旱品种,表现一定的抗旱能力;施用氮肥可提高籽粒蛋白质含量,抗旱品种的氮肥调控效应大于不抗旱品种。

关键词: 小麦, 抗旱性, 水地, 旱地, 施氮量, 籽粒蛋白质积累

Abstract:

The protein accumulation in wheat (Triticum aestivum L.) grains is seldom studied under dryland condition although it has been widely tested under irrigated conditions. For understanding the protein accumulation characteristics of wheat cultivars differing in drought tolerance and the effects of water and nitrogen, a drought-tolerant cultivar, Jinmai 47, and a drought-sensitive cultivar, Nongda 189, were planted under both irrigated and dryland conditions with three nitrogen application rates. From the 5th day after anthesis, spikelets and flag leaves were sampled at a 5 days interval for measuring the contents of protein and its components in grains and the enzymes activities in grains and flag leaves. The results indicated that the contents of albumin, gliadin, glutenin, total protein, and the ratio of glutenin to gliadin in dryland cropping were higher than those in irrigated cropping, but the globulin content was lower than that in irrigated cropping. For Nongda 189, the contents of protein and its components and the ratio of glutenin to gliadin in grains were affected significently by drought, whereas for Jinmai 47, the variations on contents of globulin, gliadin, total protein, and ratio of glutenin to gliadin were slightly. The activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamic acid-pyruvate transaminase (GPT) in grains and the activities of GS and GOGAT in flag leaves were reduced in dryland cropping compared with those in irrigated cropping. Simultaneously, the trend of GPT activity in grains was also affected by dryland cropping. The effect of drought on activities of these enzymes that involved in protein accumulation was greater in Nongda 189 than in Jinmai 47. Nitrogen application promoted the contents of protein and its components in grains, and higher rate of nitrogen application resulted in greater positive effect. Jinmai 47 presented greater effect of nitrogen application on protein content in grains than Nongda 189. Under both growing conditions, the activities of GS, GOGAT, and GPT in grains and the activity of GOGAT in flag leaves in all nitrogen treatments significantly correlated with the protein yield rather than the protein content in grains. The correlation between GS activity in flag leaves and protein yield in grains was different in the two cultivars. The above results suggest that the drought-tolerant cultivar is less affected by water condition compared with the drought-sensitive cultivar; application of nitrogen could promote the protein content in grains, and the effect is greater in the drought-tolerant cultivar than in the drought-sensitive cultivar.

Key words: Wheat, Drought-tolerant, Irrigated cropping, Dryland cropping, N application amount, Grains protein accumulation

[1]   Deng Z-Y(邓志英), Tian J-C(田纪春), Hu R-B(胡瑞波), Zhou X-F(周晓芳), Zhang Y-X(张永祥). Effect of genotype and environment on wheat main quality characteristics. Acta Ecol Sin (生态学报), 2006, 26(8): 2757-2763 (in Chinese with English abstract)

[2]   Wang X-Z(王宪泽), Tian J-C(田纪春), Zhang Z-Y(张忠义). Study on accumulation laws of the wheat grain protein and its composition. J Shandong Agric Univ (山东农业大学学报), 1994, 25(4): 394-398 (in Chinese with English abstract)

[3]   Daniel C, Triboy E. Changes in wheat protein aggregation during grain development: effects of temperatures and water stress. Eur J Agron, 2002, 16: 1-12

[4]   Zhu X-K(朱新开), Zhou J-L(周君良), Feng C-N(封超年), Guo W-S(郭文善), Peng Y-X(彭永欣). Differences of protein and its component accumulation in wheat for different end uses. Acta Agron Sin (作物学报), 2005,31(3): 342-347 (in Chinese with English abstract)

[5]   Wang X-Y (王小燕), Yu Z-W (于振文). Differences in characteristics of quality and related enzymes activity of different wheat cultivars. Sci Agric Sin (中国农业科学), 2005, 38(10): 1980-1988 (in Chinese with English abstract)

[6]   Day A D, Barmore M A. Effects of soil-moisture stress on the yield and quality of flour from wheat (Triticum aestivum L.). Agron J, 1971, 63: 115-116

[7]   Xu Z-Z(许振柱), Yu Z-W(于振文), Wang D(王东), Zhang Y-L(张永丽). Effect of irrigation conditions on protein composition accumulation of grain and its quality in winter wheat. Acta Agron Sin (作物学报), 2003, 29(5): 682-687 (in Chinese with English abstract)

[8]   Xie Z J, Jiang D, Cao W X, Dai T B, Jing Q. Effects of post anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains. J Plant Physiol Mol Biol, 2003, 29: 309-316

[9]   Ma X-M(马新明), Li L(李琳), Zhao P(赵鹏), Xiong S-P(熊淑平), Gou F(郭飞). Effects of water control on activities of nitrogen assimilation enzymes and grain quality in winter wheat. Acta Phytoecol Sin (植物生态学报), 2005, 29(1): 48-53 (in Chinese with English abstract)

[10]Zhao G-C(赵广才), Chang X-H(常旭虹), Liu L-H(刘利华), Yang Y-S(杨玉双), Li Z-H(李振华), Zhou S-Y(周双月), Guo Q-X(郭庆侠), Liu Y-J(刘月洁). Grain Yield and protein components to irrigation in strong gluten wheat. Acta Agron Sin (作物学报), 2007, 33(11): 1828-1833 (in Chinese with English abstract)

[11]Wang Y-(王月福), Yu Z-W(于振文), Li S-X(李尚霞), Yu S-L(余松烈). Effects of soil fertility on protein components content and processing quality in wheat kernel. Acta Bot Boreal-Occident Sin (西北植物学报), 2002, 22(6): 1318-1324 (in Chinese with English abstract)

[12]Wang Y-F(王月福), Yu Z-W(于振文), Li S-X(李尚霞), Yu S-L(余松烈). Effect of soil fertility on free amino acid content and protein content in different organs. J Triticeae Crops (麦类作物学报), 2003, 23(1): 41-43 (in Chinese with English abstract)

[13]Wang Y-F(王月福), Yu Z-W(于振文),Li S-X(李尚霞), Yu S-L(余松烈). Effects of nitrogen application amount on content of protein components and processing quality of wheat grain. Sci Agric Sin (中国农业科学), 2002, 35(9): 1071-1078 (in Chinese with English abstract)

[14]Johansson E, Prieto-Linde M L, Jonsson J O. Efects of wheat cultivar and nitrogen application on storage protein composition and break making quality. Cereal Chem, 2001, 78: 19-25

[15]Fu X-L(付雪丽), Wang C-Y(王晨阳), Guo T-C(郭天财), Zhu Y-J(朱云集), Ma D-Y(马冬云), Wang Y-H(王永华). Effects of water-nitrogen interaction on the contents and components of protein and starch in wheat grains. Chin J Appl Ecol (应用生态学报), 2008, 19(2): 317-322 (in Chinese with English abstract)

[16]Zhao H(赵辉), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W-X(曹卫星). Effects of post-anthesis high temperature and water stress on activities of key regulatory enzymes involved in protein formation in two wheat cultivars. Acta Agron Sin (作物学报), 2007, 33(12): 2021-2027 (in Chinese with English abstract)

[17]Liu P(刘萍), Guo W-S(郭文善), Pu H-C(浦汉春), Feng C-N(封超年), Zhu X-K(朱新开), Peng Y-X(彭永新). Effects of transient high temperature after anthesis on grain protein content and physiological mechanism in wheat (Triticum aestivum L.). Acta Agron Sin (作物学报), 2007, 33(9): 1516-1522 (in Chinese with English abstract)

[18]Fan X-M(范雪梅), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of post-anthesis drought and waterlogging on the quality of grain formation in different wheat varieties. Acta Phytoecol Sin (植物生态学报), 2004, 28(5): 680-685 (in Chinese with English abstract)

[19]Lin C C, Kao C H. Distributed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul, 1996, 18: 233-238

[20]Wu L-H(吴良欢), Tao Q-N(陶勤南). Effects of a mino acid-N on rice nitrogen nutrition and its mechanism. Acta Pedol Sin (土壤学报), 2000, 37(4): 464-473 (in Chinese with English abstract)

[21]Jiang D, Yue H X, Wollenweber B, Tan W N, Mu H, Bo Y, Dai T-B, Jing Q, Cao W-X. Effects of post-anthesis drought and waterlogging on accumulation of high-molecular-weight glutenin subunits and glutenin macropolymers content in wheat grain. J Agron Crop Sci, 2009, 195: 89-97

[22]Verma D P S. Control of Gene Expression. Boca. Ratom. Florida. USA: Chemical Rubber Company Press, 1993. pp 425-479

[23]Lea P J, Miflin B.J. Alternative route for nitrogen in higher plants. Nature, 1974, 251: 614-616

Fan X-M(范雪梅), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen rates on activities of key regulatory enzymes for grain starch and protein accumulation in wheat grown under drought and waterlogging from anthesis to maturity. Sci Agric Sin (中国农业科学), 2005, 38(6): 1132-1141 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!