Asymmetric warming,Winter wheat,Superior grain,Inferior grain,Key enzymes for starch synthesis,1000-grain weight,"/> 非对称性增温对冬小麦强势粒和弱势粒淀粉合成关键酶活性的影响
欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1031-1038.doi: 10.3724/SP.J.1006.2011.01031

• 耕作栽培·生理生化 • 上一篇    下一篇

非对称性增温对冬小麦强势粒和弱势粒淀粉合成关键酶活性的影响

田云录1,陈金1,董文军1,邓艾兴2,张卫建1,2,*   

  1. 1南京农业大学应用生态研究所,江苏南京 210095;2中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室,北京 100081
  • 收稿日期:2010-11-04 修回日期:2011-03-28 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 张卫建, E-mail: zhangweij@caas.net.cn, Tel: 010-62156856
  • 基金资助:

    本研究由国家自然科学基金项目(30771278), 江苏省自然科学基金项目(BK2007159), 教育部新世纪优秀人才资助计划项目(NCET-05-0492)和中国农业科学院院所长基金项目资助。

Effects of Asymmetric Warming on Key Enzyme Activities of Starch Synthesis in Superior and Inferior Grains of Winter Wheat under FATI Facility

TIAN Yun-Lu1,CHEN Jin1,DONG Wen-Jun1,DENG Ai-Xing2,ZHANG Wei-Jian1,2,*   

  1. 1 Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/ Key Laboratory of Crop Physiology, Ecology & Production, Ministry of Agriculture, Beijing 100081, China
  • Received:2010-11-04 Revised:2011-03-28 Published:2011-06-12 Published online:2011-04-12
  • Contact: 张卫建, E-mail: zhangweij@caas.net.cn, Tel: 010-62156856

摘要: 以扬麦11为材料,采用全生育期田间开放式增温系统进行增温处理,研究了不同增温处理对小麦强和弱势粒淀粉合成关键酶活性的影响差异。结果表明,冬小麦强势粒中蔗糖合酶(SS)、腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)和淀粉分支酶(SBE)的活性较弱势粒高,而且三者白天的活性均比夜间高。不增温条件下,整个灌浆期强势粒中SS、AGPase和SBE的活性平均分别比弱势粒高72.9%、111.4%和7.8%。全天、白天和夜间增温条件下,强势粒SS白天的活性比常温对照的高8.4%~31.2%,夜间的活性比对照高11.1%~20.3%;弱势粒SS白天的活性比对照高9.7%~20.3%之间,夜间的活性比对照高6.1%~32.0%。弱势粒中AGPase活性在不同增温处理下也显著提高,其白天的活性比对照高54.2%~124.4%,夜间的活性比CK高20.7%~99.3%。增温对SBE活性的影响较小,强势粒和弱势粒在增温条件下其白天的活性均比对照高3.9%~12.1%,夜间的活性均比对照高1.0%~7.6%。相关分析表明,AGPase和SBE的活性与千粒重之间存在极显著正相关,增温条件下AGPase和SBE的活性显著提高,尤其是弱势粒中AGPase和SBE活性的显著提高是千粒重提高的一个重要原因。

关键词: 非对称性增温, 冬小麦, 强势粒, 弱势粒, 淀粉合成关键酶, 千粒重

Abstract: Using Yangmai 11 as the material, we investigated the impacts of asymmetric warming on the key enzyme activities in starch synthesis in winter-wheat superior and inferior grains based on field study with FATI (Free Air Temperature Increased) facility. The results showed that the activities of sucrose synthase (SS), ADP-glucose pyrophosphorylase (AGPase), and starch branching enzyme(SBE) were higher in superior grains than in inferior grains, and also higher in the daytime than at night. In the control during the grain filling stage, the average activities of SS, AGPase, and SBE were 72.9%, 111.4%, and 7.8% higher in superior grains than in inferior grains. In superior grains, the SS activities in all-day warming, daytime warming and nighttime warming treatments were 8.4–31.2% higher than those in the ambient control in the daytime, and 11.1–20.3% higher than those in the control at night. In inferior grains, the increased percentages were 9.7–20.3% in the daytime and 6.1–32.0% at night. In inferior grains, the AGPase activities were elevated significantly compared to the control with 54.2–124.4% in the daytime and 20.7–99.3% at night. The SBE activities were also higher in the warming treatments than in the control with the increase of 3.9–12.1% in the daytime and 1.0–7.6% at night. Besides, the correlations existed between the activities of AGPase and SBE and the 1000-grain weight were positive and significant. This result indicated that elevation of AGPase and SBE activities plays an important role in the enhancement of 1000-grain weight.

Key words:

Asymmetric warming')">font-size: 9pt" lang="EN-US">Asymmetric warming, Winter wheat, Superior grain, Inferior grain, Key enzymes for starch synthesis, 1000-grain weight

[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[4] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[5] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[6] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[7] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[8] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[11] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[12] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[13] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[14] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[15] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!