欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1219-1228.doi: 10.3724/SP.J.1006.2011.01219

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

病原侵染早期小麦抗白粉病性状的构成因素剖析和QTL定位分析

王华忠,章珍,贺洋,岳洁瑜   

  1. 天津师范大学生命科学学院 / 细胞遗传与分子调控天津市重点实验室,天津 300387
  • 收稿日期:2010-11-02 修回日期:2011-03-06 出版日期:2011-07-12 网络出版日期:2011-04-12
  • 基金资助:

    本研究由天津市自然科学基金(08JCYBJC05000)和天津市高等学校科技发展基金(20070916)资助。

Dissecting and QTL Mapping of Component Traits of Resistance to Wheat Powdery Mildew at Early Infection Stage

WANG Hua-Zhong,ZHANG Zhen,HE Yang,YUE Jie-Yu   

  1. School of Life Sciences / Tianjin Key Laboratory of Cyto-genetical & Molecular Regulation, Tianjin Normal University, Tianjin 300387, China
  • Received:2010-11-02 Revised:2011-03-06 Published:2011-07-12 Published online:2011-04-12

摘要: 以国际小麦作图组织提供的W7984×Opata85重组近交群体为材料,将白粉病抗性分解为互作早期不同时间点的乳突指数、乳突级别、吸器指数和二级菌丝指数等成分性状,在成分性状鉴定和统计的基础上,进行遗传分析和相关QTL定位。白粉菌侵染早期乳突指数和吸器指数随时间的变化趋势均受主效单基因的调控。数量性状分析共找到34个与抗白粉病相关的QTL (21个主效QTL),分布于小麦1B、1D、2B、3A、3B、3D、4A、4B、4D、5B、6A、6B、6D、7B和7D染色体上。位于7B染色体上的QTL(QPmPI16.tn-7B)对乳突形成的影响极为显著,贡献率达48.7%,促进乳突形成的等位变异来自Opata85。不同成分性状存在共定位的QTL。成分性状的特异QTL提供了更多的有关抗白粉病遗传机制信息。

关键词: 小麦白粉病, 侵染早期, 成分性状, QTL定位

Abstract: Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of the major fungal diseases of wheat, and the use of resistant cultivars is the most effective disease control approach. Here, the International Triticeae Mapping Initiative (ITMI) W7984 × Opata85 wheat recombinant inbred population was used for powdery mildew resistance genetic study. Resistance complex trait was dissected into component traits as papilla index (PI), papilla scale (PC), haustorium index (HI) and secondary hypha index (SI) of several successive timepoint at early stage of Bgt infection. The change trends of PI and HI with time were both controlled by single main effect genes. With quantitative trait analysis, 34 resistance-related QTLs including 21 main effect QTLs were found and distributed in wheat 1B, 1D, 2B, 3A, 3B, 3D, 4A, 4B, 4D, 5B, 6A, 6B, 6D, 7B, and 7D chromosomes. QTL QPmPI16.tn-7B, which regulated the formation of papilla, had the largest effect, singly accounting for 48.69% of the phenotypic variance. Locus of QPmPI16.tn-7B promoting papilla formation was derived from the parent Opata85. Colocalized QTLs were found among different component traits. Component trait-specific QTLs may provide more information about the genetic mechanism of wheat powdery mildew resistance.

Key words: Wheat powdery mildew, Early stage of infection, Component traits, QTL mapping

[1]Vanderplank J E. Plant Disease: Epidemics and Control. New York: Academic Press, 1963
[2]Lillemo M, Asalf B, Singh R, Huerta-Espino J, Chen X, He Z, Bjørnstad A. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155–1166
[3]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451–1456
[4]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 1497–1504
[5]Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585–590
[6]Hautea R A., Coffman W R, Sorrells M E, Bergstrom G C. Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet, 1987, 73: 609–615
[7]Shaner G. Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology, 1973, 63: 867–872
[8]Gustafson G D, Shaner G. The influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology, 1982, 72: 746–749
[9]Griffey C A, Das M K, Stromberg E L. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis, 1993, 77: 618–622
[10]Griffey C A, Das M K. Inheritance of adult-plant resistance to powdery mildew in Knox62 and Massey winter wheats. Crop Sci, 1994, 34: 641–646
[11]Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98: 903–912
[12]Liu S X, Griffey C A, Saghai Maroof M A. Identification of Molecular Markers Associated with Adult Plant Resistance to Powdery Mildew in Common Wheat Cultivar Massey. Crop Sci, 2001, 41: 1268–1275
[13]Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin J M, Doussinault G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet, 2001, 103: 962–971
[14]Hu G, Webb C A, Hulbert S H. Adult plant phenotype of the Rp1–DJ compound rust resistance gene in maize. Phytopathology, 1997, 87: 236–241
[15]Penning, B W, Johal G S, McMullen M D. A major suppressor of cell death, slm1, modifies the expression of the maize (Zea mays L.) lesion mimic mutation les23. Genome, 2004, 47: 961–969
[16]Andaya C B, Ronald P C. A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol, 2003, 62: 203–208
[17]Smith S M, Hulbert S H. Recombination events generating a novel Rp1 race specificity. Mol Plant Microbe Interact, 2005, 18: 220–228
[18]Lawrence G J, Finnegan E J, Ayliffe M A, Ellis J G. The l6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 1995, 7: 1195–1206
[19]Stewart H E, Bradshaw J E, Pande B. The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathol, 2003, 52: 193–198
[20]Parniske M, Hammond-Kosack K E, Golstein C, Thomas C M, Jones D A, Harrison K, Wulff B B, Jones J D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 1997, 91: 821–832
[21]Whitaker V M, Zuzek K, Hokanson S C. Resistance of 12 rose genotypes to 14 isolates of Diplocarpon rosae Wolf (rose blackspot) collected from eastern North America. Plant Breed, 2007, 126: 83–88
[22]Li Z K, Arif M, Zhong D B, Fu B Y, Xu J L, Domingo-Rey J, Ali J, Vijayakumar C H, Yu S B, Khush G S. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994–7999
[23]Parlevliet J E. Race-specific aspects of polygenic resistance of barley to leaf rust, Puccinia hordei. Eur J Plant Pathol, 1978, 84: 121–126
[24]Perchepied L, Dogimont C, Pitrat M. Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet, 2005, 111: 65–74
[25]Darvishzadeh R, Poormohammad Kiani S, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A. Quantitative trait loci associated with isolate specific and isolate nonspecific partial resistance to Phoma macdonaldii in sunflower. Plant Pathol, 2007, 56: 855–861
[26]Arru L, Francia E, Pecchioni N. Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the ‘Steptoe’ × ‘Morex’ spring barley cross. Theor Appl Genet, 2003, 106: 668–675
[27]Wang Z-L(王竹林), Liu S-D(刘曙东), Wang H(王辉), He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Duan X-Y(段霞瑜), Zhou Y-L(周益林). Advances of study on adult-plant resistance in bread wheat. J Triticeae Crops (麦类作物学报), 2006, 26(1): 129–134 (in Chinese with English abstract)
[28]Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921–936
[29]Huo N-X(霍纳新), Zhou R-H(周荣华), Zhang L-F(张丽芳), Jia J-Z(贾继增). Mapping quantitative trait loci for powdery mildew resistance in wheat. Acta Agron Sin (作物学报), 2005, 31(6): 692–696 (in Chinese with English abstract)
[30]Sheng B-Q(盛宝钦). Investigation of host-plant response to Blumeria graminis f. sp. tritici at seedling stage in wheat. Plant Protect (植物保护), 1988, (1): 49 (in Chinese with English abstract)
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[3] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[4] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[5] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[6] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[7] 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677.
[8] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[9] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[10] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[11] 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828.
[12] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[13] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
[14] 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671.
[15] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!