欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1276-1283.doi: 10.3724/SP.J.1006.2013.01276

• 耕作栽培·生理生化 • 上一篇    下一篇

地黄栽培种与野生种内源激素含量的差异

李先恩1,2,孙鹏2,祁建军2,周丽莉2,王绍华1,*   

  1. 1 南京农业大学农学院,江苏南京 210095; 2 中国医学科学院北京协和医学院药用植物研究所, 北京 100094
  • 收稿日期:2012-06-25 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 王绍华, E-mail: wangsh@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(81274014)和国家转基因生物新品种培育重大专项(2012ZX09304006)资助。

Changes of Hormones in Cultivars and Wild-Type Varieties of Rehmannia glutinosa Libosch.

LI Xian-En1,2,SUN Peng2,QI Jian-Jun2,ZHOU Li-Li2,WANG Shao-Hua1,*   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Medicinal Plant Development, China Academy of Medical Science, Peking Union Medical College, Beijing 100094, China
  • Received:2012-06-25 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 王绍华, E-mail: wangsh@njau.edu.cn

摘要:

块根的发育和形成与植物内源激素密切相关。本研究测定地黄2个栽培种和2个野生种在生长发育过程中内源激素含量表明,地黄叶片中IAAZRABA含量变化均呈单峰曲线,即在拉线期及快速增长期逐渐升高,之后逐渐降低,但各生育期栽培种叶片中IAAZRABA含量均高于野生种;栽培种与野生种块根中IAAZR含量变化规律明显不同,在拉线期与快速增长期,栽培种迅速上升,而后逐渐降低,而在整个生长期野生种变化不明显;整个生育期参试品种叶片中GA含量变化不大,栽培种在快速增长期根中GAABA的含量迅速上升,而野生种变化不明显。从上述变化规律来看,地黄块根的形成与发育是多种内源激素协同作用的结果。IAAZR是块根起始分化关键激素,决定了块根的形成,GAABA在地黄块根的发育与膨大中起了更重要的作用。

关键词: 地黄, 栽培种, 野生种, 植物激素

Abstract:

The formation and development of tuberous roots is related to plant endogenous hormones. We determined the contents of IAA, ZR, GA and ABA in leaves and roots of two cultivars and two wild-type varieties of Rehmannia glutinosa during the growth periods and compared their developmental changing trends between cultivars and wild-type varieties of Rehmannia glutinosa. The results showed that the contents of IAA, ZR, and ABA in leaves of cultivated Rehmannia glutinosa were higher than those of wild-type varieties and their changes in both cultivated and wild type of R. glutinosa displayed the same single-peak curves during the growth periods, they were all increased gradually at the elongation and rapid enlargement stages of roots and then decreased gradually. There was no significant developmental change in GA content in the leaves of both cultivated and wild-type varieties. Hormone contents in roots of cultivars had quite different developmental changes from those of wild-type varieties: The contents of IAA, ZR, and ABA in the cultivars presented the changing trend of single-peak curves during root growth periods while GA content increased rapidly in root enlargement stage. There was no much developmental change in IAA and GA contents in roots of wild-type varieties. ZR content decreased gradually with the root development in wild-type varieties. ABA content changed in roots of wild-type varieties displayed a single-peak curve which was much lower than that of the cultivars. This different developmental changes of hormone contents in rehmannia roots between cultivars and wild-type varieties indicated that the development of the rehmannia tuberous roots is affected by synergitic effects of several hormones and that IAA and ZR act on the initiation of tuberous roots, whereas GA and ABA play a more important role in root enlargement and thickening.

Key words: Rehmannia glutinosa Libosch, Cultivar, Wild-type varieties, Hormones

[1]Institute of Medicinal Plant Development (药用植物研究所). Medicinal Plant Cultivation in China (药用植物栽培学). Beijing: Agriculture Press, 1991



[2]Nakatani M, Komeichi M. Changes in the endogenous level of zeatin riboside, abscisic acid and indole acetic acid during formation and thickening of tuberous roots in sweet potato. Jpn J Crop Sci, 1991, 60: 91–100



[3]Matsuo T, Mitsuzono H, Okada R, Itoo S. Variations in the levels of major free cytokinins and free abscisic acid during tuber development of sweet potato. J Plant Growth Regul, 1988, 7: 249–258



[4]Xue J-P(薛建平), Ge D-Y(葛德燕), Zhang A-M(张爱民). Variation of endogenous hormones of tuberous root of Rehmannia glutinosa in vitro. Acta Agron Sin (作物学报), 2004, 30(10): 1056–1059 (in Chinese with English abstract)



[5]Zhang L-M(张立明). Hormones Regulation and Yield Potential in Organic Development of Source and Sink in Ipomoea Batatas. PhD Dissertation of China Agricultural University, 2003 (in Chinese with English abstract)



[6]Patrick J W, Steains K H. Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L.: auxin dose-response curves and effects of inhibitors of polar auxin transport. J Exp Bot, 1979, 30: 203–210



[7]Lucas W J. Phloem-loading: a metaphysical phenomenon? In: Heath R L, Preiss J, eds. Regulation of Carbon Partitioning in Photosynthetic Tissue. Am Soc Plant Physiol, 1985, pp 254–271



[8]Wang Q-M(王庆美), Zhang L-M(张立明), Wang Z-L(王振林). Formation and thickening of tuberous roots in relation to the endogenous hormone concentrations in sweet potato. Sci Agric Sin (中国农业科学), 2005, 38(12): 2414–2420 (in Chinese with English abstract)



[9]Nakatan I M. In vitro formation of tuberous roots in sweet potato. Jpn J Crop Sci, 1994, 63: 158–1591



[10]Oritan I T, Yoshida T, Sasamura M. Varietal difference in cytokinin and ABA content in some crops. Jpn J Crop Sci, 1983, 52: 115–116



[11]Nakatan I M, Komeich I M. Distribution of endogenous zeatin riboside and abscisic acid in tuberous roots of sweet potato. Jpn J Crop Sci, 1991, 60: 322–323



[12]Shi C-Y(史春余), Wang Z-L(王振林), Guo F-F(郭风法). Changes of ATPase activity, ATP and ABA content in storage roots during storage root thickening of sweet potato. Acta Bot Boreali-Occident Sin (西北植物学报), 2002, 22(2): 315–320 (in Chinese with English abstract)



[13]Rav I V, Indira P. Crop physiology of sweet potato. Hortic Rev, 1999, 23: 277–339



[14]Jimenez J I, Garner J. Effect of growth regulators on the initiation and development of storage roots in rooted leaves of sweet potato. Phyton Argentina, 1983, 43: 117–124



[15]Aloni R, Aloni E, Langhans M, Ullrich C I. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot, 2006, 97: 883–893

[1] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[2] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[3] 李丽娜,杜培,付留洋,刘华,徐静,秦利,严玫,韩锁义,黄冰艳,董文召. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定[J]. 作物学报, 2017, 43(01): 133-140.
[4] 吴林坤,陈军,吴红淼,王娟英,秦贤金,张重义,林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析[J]. 作物学报, 2016, 42(02): 243-254.
[5] 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位[J]. 作物学报, 2015, 41(09): 1313-1323.
[6] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[7] 成良强,唐梅,任小平,黄莉,陈伟刚,李振动,周小静,陈玉宁,廖伯寿,姜慧芳*. 栽培种花生遗传图谱的构建及主茎高和总分枝数QTL分析[J]. 作物学报, 2015, 41(06): 979-987.
[8] 吴林坤,黄伟民,王娟英,吴红淼,陈军,秦贤金,张重义,林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41(02): 308-317.
[9] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[10] 李飞,徐建飞,刘杰,段绍光,卞春松,Jiwan P. PALTA,金黎平. 三个耐冻性不同的马铃薯野生种中FAD2基因的克隆及表达分析[J]. 作物学报, 2014, 40(01): 45-53.
[11] 蔡铁,徐海成,尹燕枰,杨卫兵,彭佃亮,倪英丽,徐彩龙,杨东清,王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制[J]. 作物学报, 2013, 39(10): 1835-1842.
[12] 张新友,徐静,汤丰收,董文召,臧秀旺,张忠信. 花生种间杂种胚胎发育及内源激素变化[J]. 作物学报, 2013, 39(06): 1127-1133.
[13] 齐永文,樊丽娜,罗青文,王勤南,陈勇生,黄忠兴,刘睿,刘少谋,邓海华,李奇伟. 甘蔗细茎野生种核心种质构建[J]. 作物学报, 2013, 39(04): 649-656.
[14] 陈小平, 朱方何, 洪彦彬, 刘海燕, 张二华, 周桂元, 李少雄, 钟旎, 温世杰, 李杏瑜, 梁炫强. 两个南方花生主栽品种荚果与叶片基因表达谱分析[J]. 作物学报, 2011, 37(08): 1378-1388.
[15] 高伟, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红, 王坤波. 利用SSR分析四倍体棉种多态性[J]. 作物学报, 2010, 36(11): 1902-1909.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!