欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2247-2252.doi: 10.3724/SP.J.1006.2013.02247

• 研究简报 • 上一篇    下一篇

小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性

陈新民*,王凤菊,李思敏,张文祥   

  1. 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2013-03-14 修回日期:2013-07-26 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 陈新民,E-mail: chenxinmin@caas.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2011BAD35B03)和引进国际先进农业科学技术计划(948计划)项目(2011-G3)资助。

Stable Production of Wheat Haploid and Doubled Haploid by Wheat × Maize Cross

CHEN Xin-Min*,WANG Feng-Ju,LI Si-Min,ZHANG Wen-Xiang   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-03-14 Revised:2013-07-26 Published:2013-12-12 Published online:2013-09-29

摘要:

小麦与玉米杂交是诱导小麦单倍体最有效的途径之一, 但单倍体和双单倍体产生频率不稳定影响了该技术的应用。选用13个小麦杂种F1代单交组合与玉米杂交, 研究了不同小麦生长环境、生长素处理、培养基和壮苗处理对单倍体及双单倍体产生频率的影响。小麦生长在大田, 去雄后割穗培养与玉米杂交平均得胚率为23.9%, 每个杂交穗平均得胚数6.8, 均是返青后从大田移回冷温室盆栽的3倍以上;不同小麦杂交组合间胚产生频率存在明显差异。生长素Dicamba蘸穗处理平均得胚率是21.5%, 2,4-D处理得胚率(21.1%)无显著差异, 但不同杂交组合间差异显著。B5培养基幼胚萌发率为70.9%~88.3%, 平均82.0%1/2 MS培养基胚萌发率为70.0%~86.0%, 平均76.6%;两种培养基平均胚萌发率无显著差异。试管苗经壮苗培养基壮苗处理与试管苗经移栽壮苗处理后加倍效率分别是67.6%8.6%。移栽壮苗处理的苗分蘖少, 生长较弱, 加倍处理后存活率低和加倍率低是其单倍体加倍效率低的原因。

关键词: 小麦×玉米, 单倍体, 激素处理, 培养基

Abstract:

One of the most effective ways to produce wheat haploid is the method of crossing wheat with maize. However, the problem of unstable frequencies in haploid and doubled haploid production affects its application. In this study, 13 F1 wheat hybrids crossed with maize to explore the effects of wheat growth condition, hormone treatment, culture medium, and strong seedling treatment on production of haploid and doubled haploid. The frequency of embryo formation was 23.9% and the number of embryos per spike was 6.8 for the wheat plants grown in filed and then detached before pollination and hydroponically cultured after pollination. The efficiency of this method was three times higher than that of the method with plants transplanted into pot after green recovering in early spring and then grown in the unheated greenhouse condition. Embryo formation frequencies were obviously different among wheat crosses. There was no significant difference in the frequency of embryo formation between treatments of dipping spike with Dicamba (21.5%) and 2,4-D (21.1%). However, wheat cross had significant effect on embryo formation. The mean frequency of embryo germination on B5 medium was 82.0%, ranging from 70.9% to 88.3%, whereas averaged frequency of embryo germination was 76.6% on 1/2 MS medium, ranging from 70.0% to 86.0%. There was no significant difference between the two culture media in embryo germination. The efficiency of doubled haploid production for the seedlings treated with culture medium and transplanted into pot was 67.6% and 8.6%, respectively. Most of seedlings transplanted into pot had no tiller and grew weakly, this is the reason for low frequency of survival plant and very low frequency of doubling after colchicine treatment.

Key words: Wheat ×, maize cross, Haploid, Hormone treatment, Culture medium

[1]Laurie A D, Bennett M D. Wheat × maize hybridization. Can J Genet Cytol, 1986, 28: 313–316



[2]Laurie A D, Reymondie S. High frequencies of fertilization and haploid seeding production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed, 1991, 106: 182–189



[3]Inagaki M, Tahir M. Comparison of haploid production frequency in wheat varieties crossed with Hordeum bulbosum L. and maize. Jpn J Breed, 1990, 40: 209–216



[4]Laurie D A, Bennett M D. The effect of the crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat × maize crosses. Theor Appl Genet, 1987, 73: 403–409



[5]Chen X-M(陈新民), Lai G-X(赖贵贤), Chen X(陈孝), Zhou J-F(周俊芳), Liu J-X(刘俊秀), Sun F-H(孙芳华). Difference of haploid production in crosses between different F1 and maize. Acta Agron Sin (作物学报), 1996, 22(4): 437–441 (in Chinese with English abstract)



[6]Mujeeb-Kazi A, Cortes A, Riera-Lizarazu O, Faridi N I, Delgado R. Polyhaploidy in the Triticeae madited by crosses of Triticum species with Zea mays and Trip sacumdatyloides. In: 8th Int Wheat Genet Symp, Beijing: China Agricultural Science and Technology Press, 1995. pp 1119–1123



[7]Suenaga K, Nakajima K. Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize ( Zea mays). Plant Cell Rep, 1989, 8: 263–266



[8]Kisan N S, Nkongolo K K, Quick J S, Johnson D L. Production of doubled haploids by anther culture and wheat × maize method in a wheat breeding programme. Plant Breed, 1993, 110: 96–102



[9]Laurie A D, Bennett M D. The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet, 1988, 76: 393–397



[10]Chen X-M(陈新民), Chen X(陈孝). Progress on haploid and doubled haploid production by wheat × maize method. Tritical Crops (麦类作物), 1998, 18(3): 1–4 (in Chinese)



[11]Chai H(蔡华), Ma C-X(马传喜), Si H-Q(司红起), Qiao Y-Q(乔玉强), Lu W-Z(陆维忠). Advance on producing double haploid of wheat by wide hybridization between wheat and maize. J Triticeae Crops (麦类作物学报), 2006, 26(4): 154–157 (in Chinese with English abstract)



[12]DePauw, R M, Knox, R E, Humphreys, D G. New breeding tools impact Canadian commercial farmer fields. Czech J. Genet Plant Breed, 2011, 47: S28–S34



[13]Chen X-M(陈新民), He Z-H(何中虎), Liu C-L(刘春来), Wang D-S(王德森), Zhang Y(张勇). New wheat variety Zhongmai 533 developed by wheat × maize cross. J Triticeae Crops (麦类作物学报), 2011, 31(3): 427–429 (in Chinese with English abstract)



[14]Matzk F, Mahn A.  Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed, 1994, 113: 125–129



[15]Campbell A W, Grin W B, Conner A J, Rowarth J S, Burritt D J. The effects of temperature and light intensity on embryo numbers in wheat doubled haploid production through wheat × maize crosses. Ann Bot, 1998, 82: 29–33



[16]Knox R E, Clarke J M, DePauw R M. Dicamba and growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breed, 2000, 119: 289–298



[17]Chen X-M(陈新民), Chen X(陈孝), Li X-Y(李学渊). Study on increasing the frequency of haploid production in wheat × maize crosses. In: Symposium on Crop Breeding (全国作物育种学术讨论会论文集). Beijing: China Agricultural Science and Technology Press, 1998. pp 127–131 (in Chinese with English abstract)



[18]Gu J(顾坚), Liu K(刘琨), Li S-X(李绍祥), Tian Y-X(田玉仙), Yang H-X(杨和仙), Yang M-J(杨木军). Study on the in vitro culture of cut plant in wheat haploid embryo induction by wheat × maize cross. J Triticeae Crops (麦类作物学报), 2008, 28(1) : 1–5 (in Chinese with English abstract)



[19]Cai H(蔡华), Ma C-X(马传喜), Si H-Q(司红起), Qiao Y-Q(乔玉强), Lu W-Z(陆维忠). Study on increasing frequency of haploid embryo production through wheat × maize. J Triticeae Crops (麦类作物学报), 2005, 25 (6) : 20–24 (in Chinese with English abstract)



[20]Inagaki M. Use of pollen storage and detached tiller culture in wheat polyploidy production through wide cross. Cereal Res Commun, 1997, 25: 7–13



[21]Cherkaoui S, Lamsaouri O, Chlyah A, Chlya H H. Durum wheat × maize crosses for haploid wheat production:influence of parental genotypes and various experimental factors. Plant Breed, 2000, 119: 31–36



[22]Lefebre D, Devaux P. Doubled haploids of wheat from wheat × maize crosses: genotype influence, fertility and inheritance of the 1BL/1RS chromosome. Theor Appl Genet, 1996, 93: 1267–1273



[23]Chen X M, Zhang W X, Cui S L, Chen X. Study on chromosome doubling for haploid produced by wheat × maize crossing. Agric Sci China, 2002, 1: 486–490

[1] 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 827-836.
[2] 殷家明,钟荣棋,林呐,唐章林,李加纳. 诸葛菜小孢子培养及其单倍体减数分裂染色体配对观察[J]. 作物学报, 2020, 46(02): 194-203.
[3] 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59.
[4] 童治军,焦芳婵,吴兴富,王丰青,陈学军,李绪英,高玉龙,张谊寒,肖炳光,吴为人. 烤烟6个农艺性状的QTL定位[J]. 作物学报, 2012, 38(08): 1407-1415.
[5] 惠国强, 杜何为, 杨小红, 刘光辉, 王振通, 张义荣, 郑艳萍, 严建兵, 张铭堂, 李建生. 不同除草剂加倍玉米单倍体的效率[J]. 作物学报, 2012, 38(03): 416-422.
[6] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61-66.
[7] 郭咏梅;穆平;刘家富;李自超;卢义宣. 水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位[J]. 作物学报, 2007, 33(01): 50-56.
[8] 张光恒;曾大力;胡时开;苏岩;阿加拉铁;郭龙彪;钱前. 水稻苗期耐淹相关性状QTL分析[J]. 作物学报, 2006, 32(09): 1280-1286.
[9] 易斌;陈伟;马朝芝;傅廷栋;涂金星. 甘蓝型油菜产量及相关性状的QTL分析[J]. 作物学报, 2006, 32(05): 676-682.
[10] 郭咏梅;穆平;刘家富;卢义宣;李自超. 水、旱栽培条件下稻米主要品质性状的比较研究[J]. 作物学报, 2005, 31(11): 1443-1448.
[11] 罗瑛皓;陈新民;夏兰芹;陈孝;何中虎;任正隆. 小麦抗白粉病基因聚合体DH材料的分子标记鉴定[J]. 作物学报, 2005, 31(05): 565-570.
[12] 付凤玲;李晚忱;荣廷昭. N6培养基添加钙和烯效唑对玉米幼胚培养的作用[J]. 作物学报, 2005, 31(05): 634-639.
[13] 张再君;梁承邺;朱英国. DH群体内株系对籼、粳亚种的亲和性[J]. 作物学报, 2005, 31(04): 511-514.
[14] 王景雪;孙毅;胡晶晶;崔贵梅;雷海英;徐培林. 玉米自交系高频率再生因素研究[J]. 作物学报, 2004, 30(04): 398-402.
[15] 顾宏辉;张冬青;周伟军. 换培养液和秋水仙碱处理对白菜型油菜小孢子胚胎发生的影响[J]. 作物学报, 2004, 30(01): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!