作物学报 ›› 2014, Vol. 40 ›› Issue (01): 63-71.doi: 10.3724/SP.J.1006.2014.00063
苏瑞波1,2,陈明2,*,徐兆师2,李连城2,马庆1,*,马有志2
SU Rui-Bo1,2,CHEN Ming2,*,XU Zhao-Shi,LI Lian-Cheng,MA Qing1,*,MA You-Zhi2
摘要:
采用最小表达框技术转化植物可以规避由骨架序列引起的安全风险。核基质结合区序列SAR (scaffold attachment region)可作为边界元件与核基质结合阻挡转基因片段邻近染色质区的作用与影响, 提高外源基因稳定性。本研究在最小表达框序列两端添加SAR序列, 提高小麦最小表达框转基因表达的稳定性, 提高转化基因的表达效率。首先, 以GUS为目的基因构建带有SAR序列的最小表达框, 以科农199为受体进行基因枪转化, 同时以不加SAR序列的最小表达框片段为对照。带有SAR序列的最小表达框片段共轰击857个幼胚, T0代获得40株再生植株, PCR检测到16株阳性植株, 转化效率为1.87%; 对这16个阳性单株进行GUS染色, 15株显色; 从来自4个T0阳性植株的18个T1代植株中随机选取18株进行PCR和GUS染色检测, 有15株表现为阳性。不带SAR序列的对照片段轰击1012个幼胚, 获得31株再生植株, 其中5株PCR阳性, 转化效率0.49%, 这5个阳性植株中仅2株为GUS染色阳性; 来自于5个T0代PCR阳性株系的10个T1代单株中没有发现PCR和GUS染色阳性株。表明SAR序列可以提高基因枪转基因效率和目的基因表达稳定性。为了创制抗旱转基因小麦, 以来自大豆的抗旱相关转录因子基因GmDREB3为目的基因, Bar基因为筛选标记基因, 转化受体小麦济麦22, 共轰击6045个幼胚, 获得再生植株130株, PCR检测阳性植株30株, 转化效率为0.50%; 随机选取6株PCR阳性植株进行RT-PCR分析, 其中5株可检测到外源基因的转录。进一步对这5株RT-PCR阳性植株插入片段完整性进行分析, 其中4株插入片段基本完整。通过real-time PCR分析, 发现T0代6个RT-PCR阳性植株的外源GmDREB3的拷贝数为1~3个。以上结果证明, 在最小表达框两端加上SAR序列后可以提高小麦最小表达框转基因表达的稳定性。
[1]Barro F, Cannell M, Lazzeri P, Barcelo P. The influence of auxins on transformation of wheat and Tritordeum and analysis of transgene integration patterns in transformants. Theor Appl Genet, 1998, 97: 684–695[2]Cannell M, Doherty A, Lazzeri P, Barcelo P. A population of wheat and Tritordeum transformants showing a high degree of marker gene stability and heritability. Theor Appl Genet, 1999, 99: 772–784[3]Linden R M, Winocour E, Berns K I. The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci USA, 1996, 93: 7966–7972[4]Müller A E, Kamisugi Y, Grüneberg R, Niedenhof I, Hörold R J, Meyer P. Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol, 1999, 291: 29–46[5]Fu X, Duc L T, Fontana S, Bong B B, Tinjuangjun P, Sudhakar D, Twyman R M, Christou P, Kohli A. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res, 2000, 9: 11–19[6]姚琴, 丛玲, 汪越胜, 陈明洁, 杨广笑, 何光源. 无载体框架序列转基因小麦中外源基因表达框的遗传分析. 遗传, 2006, 28: 695–698Yao Q, Cong L, Wang Y S, Chen M J, Yang G X, He G Y. Inheritance of the foreign gene 1Ax 1 in transgenic wheat (Triticum aestivum L.) with gene cassettes lacking vector backbone sequences. Hereditas (Beijing), 2006, 28: 695–698 (in Chinese with English abstract)[7]王天云, 袁保梅, 薛乐勋. 核基质结合区与转基因沉默. 生物学通报,2004, 39(12): 15–17 (in Chinese)Wang T Y, Yuan B M, Xue L X. Scaffold attachment region and Transgene Silence. Bull Biol, 2004, 39(12): 15–17 (in Chinese)[8]Wang T, Xue L, Hou W, Yang B, Chai Y, Ji X, Wang Y. Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Appl Microbiol Biotechnol, 2007, 76: 651–657[9]Allen G C, Hall G E, Childs L C, Weissinger A K, Spiker S, Thompson W F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell, 1993, 5: 603–613[10]Breyne P, Van Montagu M, Depicker N, Gheysen G. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell, 1992, 4: 463–471[11]Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Rep, 2004, 22: 289–300[12]Thi Loc N, Tinjuangjun P, Gatehouse A M, Christou P, Gatehouse J A. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed, 2002, 9: 231–244[13]Vain P, Worland B, Kohli A, Snape J W, Christou P, Allen G C, Thompson W F. Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J, 1999, 18: 233–242[14]Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol, 1996, 110: 15–21[15]Holmes-Davis R, Comai L. Nuclear matrix attachment regions and plant gene expression. Trends Plant Sci, 1998, 3: 91–97[16]van der Geest A H M, Hall G E Jr, Spiker S, Hall T C. The β-phaseolin gene is flanked by matrix attachment regions. Plant J, 1994, 6: 413–423[17]Allen G C, Hall G, Michalowski S, Newman W, Spiker S, Weissinger A K, Thompson W F. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell, 1996, 8: 899–913 |
[1] | 康乐;叶兴国;徐惠君;杜丽璞. 葡萄糖氧化酶基因转化小麦的研究[J]. 作物学报, 2005, 31(06): 686-691. |
[2] | 山松;张中林;陈曦;刘春英;沈桂芳. 烟草叶绿体16S启动子的克隆改造及转基因植株的获得[J]. 作物学报, 1999, 25(05): 536-540. |
|