作物学报 ›› 2014, Vol. 40 ›› Issue (01): 54-62.doi: 10.3724/SP.J.1006.2014.00054
李彬1,邓元宝1,颜学海1,杨阳1,刘彭强1,杜勇1,谢培1,王德正2,邓其明1,*,李平1,*
LI Bin1,DENG Yuan-Bao1,YAN Xue-Hai1,YANG Yang1,LIU Peng-Qiang1,DU Yong1,XIE Pei1,WANG De-Zheng2,DENG Qi-Ming1,*,LI Ping1,*
摘要:
[1]Moffat A S. Plant genetics. Mapping the sequence of disease resistance. Science, 1994, 265: 1804–1805[2]Skamnioti P, Gurr S J. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol, 2009, 27: 141–150[3]赵国珍, 贾育林, 严宗卜, Christopher WDEREN, Melissa H JIA, 戴陆园. 一种高效便捷的水稻DNA提取法及其应用. 中国水稻科学. 2012, 26: 495–499Zhao G-Z, Jia Y L, Yan Z B, Christopher WDEREN, Melissa H JIA, Dai L G. An efficient, economic, and rapid rice DNA extracton method and its application. Chin J Rice Sci, 2012, 26: 495–499 (in Chinese with English abstract)[4]雷财林, 凌忠专, 王久林. 水稻抗病育种研究进展. 生物学通报, 2004, 39(11): 4–7Lei C L, Ling Z Z, Wang J L. Research advanccs in rice breeding for disease resistance. Bull Biol, 2004, 39(11): 4–7 (in Chinese)[5]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267–2276[6]Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033–2046[7]Hua L, Wu J, Chen C, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055[8]Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012, 72: 894–907[9]Lee S W, Han S W, Sririyanum M, Park CH J, Seo Y S, Ronald P C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 2009, 326: 850–853[10]Lin F, Chen S, Que Z, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871–1880[11]Liu J, Liu X, Dai L, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34: 765–776[12]Qu S D, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914[13]Wang W, Wen Y, Berkey R, Xiao S Y. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell, 2009, 21: 2898–2913[14]Xu Y B. Molecular Plant Breeding. USA: International Institute for Applied Biological Science Center, 2012. pp 213–219[15]Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19: 1216–1228[16]Zhu X, Chen S, Yang J, Zhou S C, Zeng L X, Han J L, Su J, Wang L, Pan Q H. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet, 2012, 124: 1295–1304[17]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001[18]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Saito Y H, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498–510[19]Chen X, Shang J, Chen D, Lei C L, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794–804[20]刘华招, 陈温福, 刘延. 水稻基因分子标记的物理图谱锚定. 华北农学报, 2009, 24(增刊): 5–8Liu H-Z, Chen W-F, Liu Y. Rice Pi genes molecular markers anchored to the physics map of rice genome. Acta Agric Boreali-Sin, 2009, 24(suppl): 5–8 (in Chinese with English abstract) [21]Zhai C, Lin F, Dong Z, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321–334[22]Yuan B, Zhai C, Wang W, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017–1028[23]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467–479[24]Bamshad M, Wooding S P. Signature of natural selection in the human genome. Nat Rev Genet, 2003, 4: 99–111[25]Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in the Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 11525–11530[26]Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J, 2010, 64: 433–445[27]Ravensdale M, Nemri A, Thrall P H, Ellis J G, Dodds P N. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol Plant Pathol, 2011, 12: 93–102[28]Rai A K, Kumar S P, Gupta S K, Gautam N, Singh N K, Sharma T R. Functional complementation of rice blast resistance gene Pi-K(H)(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Plant Biochem Biotechnol, 2011, 20: 55–65[29]李成云, 陈宗麒, 陈琼珠,稻瘟病菌的研究进展. 西南农业学报, 1995, 8(3): 107–112Li C Y, Chen Z Q, Chen Q Z. Research progress of rice blast fungus. Southwest China J Agric Sci, 1995, 8(3): 107–112 (in Chinese)[30]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pi-sh locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10(175): 1–14[31]刘海, 肖应辉, 唐文邦, 邓化冰, 陈立云. 水稻两用核不育系繁殖基地计算机选择系统研制与应用. 作物学报, 2011, 37: 755–763Liu , Xiao Y H, Tang W B, Deng H B, Chen L Y. Development and application of a computer-aided selection system for thermo-sensitive genic male sterile rice multiplying site. Acta Agron Sin, 2011, 37: 755–763 (in Chinese with English abstract)[32]杨仕华, 程本义, 沈伟峰, 夏俊辉. 中国两系杂交水稻选育与应用进展. 杂交水稻, 2009, 24(1): 5–9Yang S H, Cheng B Y, Shen W F, Xia J H. Progress of application and breeding on two-line hybrid rice in China. Hybrid Rice, 2009, 24(1): 5–9 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080. |
[3] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[4] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[5] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[6] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[9] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[10] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[11] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[12] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[13] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[14] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[15] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
|