欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (01): 54-62.doi: 10.3724/SP.J.1006.2014.00054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个粳稻来源抗稻瘟病基因的鉴定、遗传分析和基因定位

李彬1,邓元宝1,颜学海1,杨阳1,刘彭强1,杜勇1,谢培1,王德正2,邓其明1,*,李平1,*   

  1. 1四川农业大学水稻研究所, 四川温江 611130; 2安徽省农业科学院, 安徽合肥 230031
  • 收稿日期:2013-05-08 修回日期:2013-06-16 出版日期:2014-01-12 网络出版日期:2013-10-22
  • 通讯作者: 邓其明, E-mail: dengqmsc@163.com, Tel: 1388065608; 李平, E-mail: liping6575@163.com, Tel: 13908070452
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A101)资助。

Identification, Genetic Analysis and Gene Mapping of a Rice Blast Resistance Gene in Japonica Rice

LI Bin1,DENG Yuan-Bao1,YAN Xue-Hai1,YANG Yang1,LIU Peng-Qiang1,DU Yong1,XIE Pei1,WANG De-Zheng2,DENG Qi-Ming1,*,LI Ping1,*   

  1. 1 Rice Research Institute of Sichuan Agricultural University, Wenjiang 611130, China; 2 Anhui Academy of Agricultural Sciences, Hefei 230031, China?
  • Received:2013-05-08 Revised:2013-06-16 Published:2014-01-12 Published online:2013-10-22
  • Contact: 邓其明, E-mail: dengqmsc@163.com, Tel: 1388065608; 李平, E-mail: liping6575@163.com, Tel: 13908070452

摘要:

7001S是一个广谱抗稻瘟病的粳稻两用核不育系, 对来自全国不同稻区的22株稻瘟病菌系均表现为高度抗性。通过构建7001S/80-4B F2群体的遗传分析和初步定位表明, F2分离单株对稻瘟病菌的抗性呈明显的抗、感双峰分布, 抗感分离符合31的理论比例, 说明粳稻7001S对稻瘟病菌的抗性由一对显性核基因或一个显性QTL位点控制, 并将该基因初步定位于第11染色体长臂末端。进一步通过扩大遗传群体和分子标记开发, 利用基于BSA的隐性群体分析技术, 将目的基因精细定位于P21-2415RM27322之间约310 kb的范围内, 并获得了可用于分子标记辅助选择的紧密连锁和共分离分子标记, 同时对目标基因所在区域进行基因预测, 初步确定了候选基因。为进一步开展该抗稻瘟病基因的克隆、功能验证和抗病机理研究, 以及通过分子标记辅助选择技术培育抗稻瘟病水稻新品种等工作奠定了基础。

关键词: 稻瘟病, 7001S, 抗性基因, 分子标记, 遗传分析, 精细定位

Abstract:

7001S is a male-sterile rice with broad-spectrum resistance to rice blast pathogens and highly resistant to 22 strains of Magnaporthe oryzae (M. oryzae). The F2 generation of hybrid between 7001S and 80-4B showed significant resistance to rice blast pathogens. The ratio of resistant plants: susceptible plants was 3:1, indicating that the resistance of 7001S to the rice blast is controlled by one-dominant karyogene or a QTL locus. Molecular marker analysis showed that the rice blast resistance gene was located on the terminal long arm of chromosome 11 between P21-2415 and RM27322, with genetic distance of 0.27 cM and physical distance of 310 kb. Some co-segregated molecular markers were also found in this gene area and could be used for identifying candidate genes.

Key words: Rice blast, 7001S, Resistance gene, Molecular markers, Genetic analysis, Gene mapping

[1]Moffat A S. Plant genetics. Mapping the sequence of disease resistance. Science, 1994, 265: 1804–1805



[2]Skamnioti P, Gurr S J. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol, 2009, 27: 141–150



[3]赵国珍, 贾育林, 严宗卜, Christopher WDEREN, Melissa H JIA, 戴陆园. 一种高效便捷的水稻DNA提取法及其应用. 中国水稻科学. 2012, 26: 495–499



Zhao G-Z, Jia Y L, Yan Z B, Christopher WDEREN, Melissa H JIA, Dai L G. An efficient, economic, and rapid rice DNA extracton method and its application. Chin J Rice Sci, 2012, 26: 495–499 (in Chinese with English abstract)



[4]雷财林, 凌忠专, 王久林. 水稻抗病育种研究进展. 生物学通报, 2004, 39(11): 4–7



Lei C L, Ling Z Z, Wang J L. Research advanccs in rice breeding for disease resistance. Bull Biol, 2004, 39(11): 4–7 (in Chinese)



[5]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267–2276



[6]Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033–2046



[7]Hua L, Wu J, Chen C, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055



[8]Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012, 72: 894–907



[9]Lee S W, Han S W, Sririyanum M, Park CH J, Seo Y S, Ronald P C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 2009, 326: 850–853



[10]Lin F, Chen S, Que Z, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871–1880



[11]Liu J, Liu X, Dai L, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34: 765–776



[12]Qu S D, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914



[13]Wang W, Wen Y, Berkey R, Xiao S Y. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell, 2009, 21: 2898–2913



[14]Xu Y B. Molecular Plant Breeding. USA: International Institute for Applied Biological Science Center, 2012. pp 213–219



[15]Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19: 1216–1228



[16]Zhu X, Chen S, Yang J, Zhou S C, Zeng L X, Han J L, Su J, Wang L, Pan Q H. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet, 2012, 124: 1295–1304



[17]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001



[18]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Saito Y H, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498–510



[19]Chen X, Shang J, Chen D, Lei C L, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794–804



[20]刘华招, 陈温福, 刘延. 水稻基因分子标记的物理图谱锚定. 华北农学报, 2009, 24(增刊): 5–8



Liu H-Z, Chen W-F, Liu Y. Rice Pi genes molecular markers anchored to the physics map of rice genome. Acta Agric Boreali-Sin, 2009, 24(suppl): 5–8 (in Chinese with English abstract)



[21]Zhai C, Lin F, Dong Z, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321–334



[22]Yuan B, Zhai C, Wang W, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017–1028



[23]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467–479



[24]Bamshad M, Wooding S P. Signature of natural selection in the human genome. Nat Rev Genet, 2003, 4: 99–111



[25]Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in the Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 11525–11530



[26]Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J, 2010, 64: 433–445



[27]Ravensdale M, Nemri A, Thrall P H, Ellis J G, Dodds P N. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol Plant Pathol, 2011, 12: 93–102



[28]Rai A K, Kumar S P, Gupta S K, Gautam N, Singh N K, Sharma T R. Functional complementation of rice blast resistance gene Pi-K(H)(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Plant Biochem Biotechnol, 2011, 20: 55–65



[29]李成云, 陈宗麒, 陈琼珠,稻瘟病菌的研究进展. 西南农业学报, 1995, 8(3): 107–112



Li C Y, Chen Z Q, Chen Q Z. Research progress of rice blast fungus. Southwest China J Agric Sci, 1995, 8(3): 107–112 (in Chinese)



[30]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pi-sh locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10(175): 1–14



[31]刘海, 肖应辉, 唐文邦, 邓化冰, 陈立云. 水稻两用核不育系繁殖基地计算机选择系统研制与应用. 作物学报, 2011, 37: 755–763



Liu , Xiao Y H, Tang W B, Deng H B, Chen L Y. Development and application of a computer-aided selection system for thermo-sensitive genic male sterile rice multiplying site. Acta Agron Sin, 2011, 37: 755–763 (in Chinese with English abstract)



[32]杨仕华, 程本义, 沈伟峰, 夏俊辉. 中国两系杂交水稻选育与应用进展. 杂交水稻, 2009, 24(1): 5–9



Yang S H, Cheng B Y, Shen W F, Xia J H. Progress of application and breeding on two-line hybrid rice in China. Hybrid Rice, 2009, 24(1): 5–9 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[3] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[4] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[5] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[9] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[10] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[11] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[12] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[13] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[14] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[15] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!