作物学报 ›› 2015, Vol. 41 ›› Issue (05): 698-707.doi: 10.3724/SP.J.1006.2015.00698
赵晓萌1,**,刘婧娜2,**,易丽霞3,朱波3,代红翠2,胡跃高2,曾昭海2,*
ZHAO Xiao-Meng1,**,LIU Jing-Na2,**,YI Li-Xia3,ZHU Bo3,DAI Hong-Cui2,HU Yue-Gao2,ZENG Zhao-Hai2,*
摘要:
利用PCR-DGGE技术及克隆文库构建方法研究尿素、紫云英鲜草翻压还田、黑麦草鲜草翻压还田和不施氮肥4种处理对双季稻不同生育时期(早稻季:分蘖期,拔节期,成熟期;晚稻季:分蘖期,扬花期,成熟期)稻田根际土壤中产甲烷群落结构的影响。结果表明,双季稻不同取样时期和各处理中产甲烷古菌群落结构稳定且相似,早稻季和晚稻季的优势群落均为甲烷微菌目(Methanomicrobiales)、Rice Cluster I (RC-I)、甲烷鬃菌科(Methanosaetaceae)、甲烷杆菌属(Methanobacterium)。但早稻季产甲烷古菌群落的Shannon-Weiner指数(H)和丰富度指数(R)整体低于晚稻季。紫云英和黑麦草鲜草翻压还田处理较尿素处理更为明显地提高了双季稻(一年)稻田根际土壤中产甲烷古菌群落的Shannon-Weiner指数和丰富度指数,但均暂未对产甲烷群落结构产生决定性影响。
[1]朱波, 易丽霞, 胡跃高, 曾昭海, 唐海明, 肖小平, 杨光立. 黑麦草鲜草翻压还田对双季稻CH4与N2O排放的影响. 农业工程学报, 2011, 279(12): 241–245Zhu B, Yi L X, Hu Y G, Zeng Z H, Tang H M, Xiao X P, Yang G L. Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil. J Agric Eng Res, 2011, 27(12): 241–245 (in Chinese with English abstract)[2]余佳, 刘刚, 马静, 张广斌, 徐华, 蔡祖聪. 红壤丘陵冬闲稻田CH4和N2O排放通量的研究. 生态环境学报, 2012, 21(1): 55–58Yu J, Liu G, Ma J, Zhang G B, Xu H, Cai Z C. CH4 and N2O fluxes from winter fallow paddy fields in a hilly area of southeast China. Ecol Environ Sci, 2012, 21(1): 55–58 (in Chinese with English abstract) [3]Ferry J G. Methane: Small molecule, big impact. Science, 1997, 278: 1413–1414[4]辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示. 自然资源学报, 2009, 24(1): 58–65Xin L J, Li X B. Changes of multiple cropping in double cropping rice area of southern China and its policy implications. J Nat Resour, 2009, 24(1): 58–65 (in Chinese with English abstract)[5]Conrad R, Klose M, Noll M, Kemnitz D, Bodelier P L E. Soil type links microbial colonization of rice roots to methane emission. Global Change Biol, 2008, 14: 657–669[6]Chin K J, Lueders T, Friedrich M W, Klose M, Conrad R. Archaeal community structure and pathway of methane formation on rice roots. Microbial Ecol, 2004, 47: 59–67[7]Asakawa S, Hayano K. Populations of methanogenic bacteria in paddy field soil under double cropping conditions (Rice-Wheat). Biol Fert Soils, 1995, 20: 113–l17[8]Lee C H, Park K D, Jung K Y, Ali M A, Lee D. Effects of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agric Ecosyst Environ, 2010, 138: 343–347[9]Yang Z P, Zheng S X, Nie J, Liao Y L, Xie J. Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double–rice cropping system. J Integr Agric, 2014, 13: 1772–1781[10]Kruger M, Frenzel P, Kemnitz D, Conrad R. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol, 2005, 51: 323–331[11]Watanabe T, Kimura M, Asakawa S. Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biol Biochem, 2006, 38: 1264–1274[12]Zhu B, Yi L X, Hu Y G, Zeng Z H, Lin C W, Tang H M, Yang G L, Xiao X P. Nitrogen release from incorporated 15N-labelled Chinese milk vetch (Astragalus sinicus L.) residue and its dynamics in a double rice cropping system. Plant Soil, 2014, 374: 331–344[13]Kim S, Lee C, Gutierrez J, Kim P J. Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant Soil, 2013, 366: 273–286[14]Wassmann R, Neue H U, Bueno C, Lantin R S, Alberto M C R, Buendia L V, Bronson K, Papen H, Rennenberg H. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant Soil, 1998, 203: 227–237[15]Khalil M A K, Rasmussen R A, Sheare M J, Dalluge R W, Ren L X, Duan C L. Factors affecting methane emissions from rice fields. J Geophys Res, 1998, 103(D19): 25219–25231[16]Chin K J, Lueders T, Friedrich M W, Klose M, Conrad R. Archaeal community structure and pathway of methane formation on rice roots. Microbial Ecol, 2004, 47(1): 59–67[17]Lu Y H, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005, 309: 1088–1090[18]Conrad R. Microbial ecology of methanogens and methanotrophs In: Advances in Agronomy. Marburg: Academic Press, 2007. pp 1–63[19]Chidthaisong A, Conrad R. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiol Ecol, 2000, 31: 73–86[20]Liu Y, Lou J, Li F B, Xu J M, Yu X S, Zhu L A, Wang F. Evaluating oxidation–reduction properties of dissolved organic matter from Chinese milk vetch (Astragalus sinicus L.): a comprehensive multi-parametric study. Environ Technol, 2014, 35: 1916–1927[21]Kim S, Lee C, Gutierrez J, Kim P J. Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant Soil, 2013, 366: 273–286 |
[1] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[2] | 唐海明,汤文光,肖小平,罗尊长,张帆,汪柯,杨光立. 冬种黑麦草对6种水稻土重金属含量及晚稻不同器官重金属累积与分配的影响[J]. 作物学报, 2012, 38(06): 1121-1126. |
[3] | 陈坚, 张辉, 朱炳耀, 林新坚. 紫云英SSR分子标记的开发及在品种鉴别中的应用[J]. 作物学报, 2011, 37(09): 1592-1596. |
[4] | 李文西,鲁剑巍,鲁君明,李小坤,戴志刚,杨娟. 苏丹草-黑麦草轮作制中施肥对饲料产量、养分吸收与土壤性质的影响[J]. 作物学报, 2009, 35(7): 1350-1356. |
[5] | 王丽宏;曾昭海;杨光立;李会彬;肖小平;张帆;胡跃高. 六种稻田土壤冬季种植黑麦草功能效应研究[J]. 作物学报, 2007, 33(12): 1972-1976. |
|