欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (05): 692-697.doi: 10.3724/SP.J.1006.2015.00692

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗白叶枯病新基因Xa39分子标记有效性的评价

卓大龙1,2,胡丹丹1,2,张帆2,张帆2,*,石英尧1,*,高用明2,周永力2,黎志康2   

  1. 1安徽农业大学农学院,安徽合肥 230036;2中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2014-11-24 修回日期:2015-03-19 出版日期:2015-05-12 网络出版日期:2015-03-30
  • 基金资助:

    本研究由国家自然科学基金项目(U1201211)和国家高技术研究发展计划(863计划)项目(2014AA10A603)资助。

Evaluation of Selective Efficiency of Molecular Markers Linked with a Novel Gene Xa39 Resistant to Bacterial Blight in Rice

ZHUO Da-Long1,2,HU Dan-Dan1,2,ZHANG Fan2,ZHANG Fan2,*,SHI Ying-Yao1,*,GAO Yong-Ming2,ZHOU Yong-Li2,LI Zhi-Kang2   

  1. 1 College of Agronomy, Anhui Agricultural University, Hefei 230036, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2014-11-24 Revised:2015-03-19 Published:2015-05-12 Published online:2015-03-30

摘要:

Xa39是一个对水稻白叶枯病具有广谱抗性的显性新基因,在水稻抗白叶枯病育种中具有良好的应用价值和前景。在前期研究中,我们将该基因定位在水稻第11染色体上。本研究利用携带Xa39基因的供体亲本FF329与受体亲本BT4BT6BT12BT18杂交培育出4FL104FL144FL174FL21四个育种F2分离群体,结合人工接种抗病性鉴定,对3个与Xa39紧密连锁的分子标记进行分子标记辅助选择(MAS)有效性比较,筛选高效的PCR分子标记。结果表明,标记RM26985RM206在上述4个群体中的MAS准确率分别达到95.81%93.61%,同时使用两者其准确率达到95.59%,上述2个标记在水稻白叶枯病抗性改良育种中可以提高Xa39的选择效率.

关键词: Xa39, 水稻白叶枯病, SSR, MAS

Abstract:

 Xa39 is a novel and dominant resistance gene with broad spectrum for bacterial leaf blight in rice. In previous study, this gene was mapped on chromosome 11. In present study, FF329 carrying Xa39 gene as donor parent and BT4, BT6, BT12, BT18 as recipients were used to develop four F2 segregation populations (4FL10, 4FL14, 4FL17, 4FL21). Combining artificial inoculation with phenotype identification of bacterial leaf blight, the validity of three molecular markers tightly linked with Xa39, and two co-dominant molecular markers was investigated for marker-assisted selection (MAS). The results showed that the accuracy of marker RM26985 for MAS was 95.81% and that of marker RM206 was 93.61% in the four populations. The accuracy of two markers RM26985 and RM206 used simultaneously for MAS was up to 95.35%. Therefore, RM26985 and RM206 can be used as effective markers in MAS for Xa39 in rice breeding program.

Key words: Xa39, Rice bacterial blight, SSR, MAS

[1]Mew T W. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359–382



[2]Zhang F, Zhuo D L, Zhang F, Huang L Y, Wang W S, Xu J L, Vera C C, Li Z K, Zhou Y L. Xa39, a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathol, 2014, DOI: 10.1111/ppa.12283



[3]张帆, 周永力. 白叶枯病菌(Xanthomonas oryzae pv. oryzae)与水稻抗病基因识别的分子机理. 中国水稻科学, 2013, 27: 305–311



Zhang F, Zhou Y L. Molecular mechanisms of rice resistance genes recognized by Xanthomonas oryzae pv. oryzae. Chin J Rice Sci, 2013, 27: 305–311 (in Chinese with English abstract)



[4]罗生香, 张帆, 陈现朝, 靳明山, 周永力, 黎志康. 26个水稻新品种(系)对白叶枯病抗性的鉴定和评价. 植物遗传资源学报, 2013, 14: 390–394



Luo S X, Zhang F, Chen X C, Jin M S, Zhou Y L, Li Z K. Evaluation of 26 rice cultivas (lines) resistance to bacterial blight at the tillering and booting stages. J Plant Genet Resour, 2013, 14: 390–394 (in Chinese with English abstract)



[5]Lee S W, Choi S H, Han S S, Lee D G, Lee B Y. Distribution of Xanthomonas oryzae pv. oryzae strains virulent to Xa21 in Korea. Phytopathology, 1999, 89(10): 928–933



[6]范宏环, 王林友, 张礼霞, 于新, 王曦, 金庆生, 王建军. 通过分子标记辅助选择技术选育携有水稻白叶枯病抗性基因Xa23的水稻株系. 中国水稻科学, 2011, 25: 331–334



Fan H L, Wang L Y, Zhang L X, Yu X, Wang Y, Jin Q S, Wang J J. Breeding of rice lines with bacterial blight resistance gene Xa23 by using marker-assisted selection. Chin J Rice Sci, 2011, 25: 331–334 (in Chinese with English abstract)



[7]章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111–119



Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111–119 (in Chinese with English abstract)



[8]Khan M A, Naeem M, Iqbal M. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol, 2014, 139: 27–37



[9]Zhou Y L, Uzokwe V N E, Zhang C H, Cheng L H, Wang L, Chen K, Gao X Q, Sun Y, Chen J J, Zhu L H, Zhang Q, Gauhar A, Xu J L, Li Z K. Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot, 2011, 30: 637–644



[10]Luo Y C, Sangha J S, Wang S H, Li Z F, Yang J B, Yin Z C. Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol Breed, 2012, 30: 1601–1610



[11]闫成业, 刘艳, 牟同敏. 分子标记辅助选择聚合Xa7, Xa21和cry1C*基因改良杂交水稻金优207的白叶枯病和螟虫抗性. 杂交水稻, 2013, 28(5): 52–59



Yan C Y, Liu Y, Mou T M. Molecular marker-assisted selection aggregation Xa7, Xa21 and cry1C* genes to modify bacterial blight and stem borer resistance of hybrid rice Jinyou 207. Hybrid Rice, 2013, 28(5): 52–59 (in Chinese)



[12]Li Z K, Arif M, Zhong D B, Fu B Y, Xu J L, Domingo-Rey J, Ali J, Vijayakumar C H M, Yu S B, Khush G S. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994–7999



[13]Shanti M L, George M L C, Cruz C M V, Bernardo M A, Nelson R J, Leung H, Reddy J N, Sridhar R. Identification of resistance genes effective against rice bacterial blight pathogen in eastern. India Plant Dis, 2001, 85: 506–512



[14]Kauffman H E, Reddy A P K, Hsieh S P Y, Merca S D. A improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzea. Plant Dis Rep, 1973, 57: 537–541



[15]Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification and fine mapping of resistance gene to Maganaporthe oryzae in a space-induced rice mutant. Mol Breed, 2011, 28: 303–312



[16]邓其明, 周宇爝, 蒋昭雪, 万映秀, 赵斌, 杨莉, 李平. 白叶枯病抗性基因Xa21, Xa4和Xa23的聚合及其效应分析. 作物学报, 2005, 31: 1241–1246



Deng Q M, Zhou Y J, Jiang Z X, Wan Y X, Zhao B, Yang L, Li P. Pyramiding bacterial blight (BB) resistance genes (Xa21, Xa4 and Xa23) into rice and its effect analysis. Acta Agron Sin, 2005, 31: 1241–1246 (in Chinese with English abstract)



[17]何风华, 席章营, 曾瑞珍, Akshay T, 张桂权. 利用高代回交和分子标记辅助选择建立水稻单片段代换系. 遗传学报, 2005, 32: 825–831



He F H, Xi Z Y, Zeng R Z, Akshay T, Zhang G Q. Developing single segment substitution lines (SSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin, 2005, 32: 825–831 (in Chinese with English abstract)



[18]潘晓飚, 陈凯, 张强, 黄善军, 谢留杰, 李美, 孟丽君, 徐正进, 徐建龙, 黎志康. 分子标记辅助选育水稻抗白叶枯病和稻瘟病多基因聚合恢复系. 作物学报, 2013, 39: 1582–1593



Pan X B, Chen K, Zhang Q, Huang S J, Xie L J, Li M, Meng L J, Xu Z J, Xu J L, Li Z K. Developing restorer liner pyramiding different resistant genes to blast and bacterial leaf blight by maker-assisted selection in rice. Acta Agron Sin, 2013, 39: 1582–1593 (in Chinese with English abstract)



[19]潘海军, 王春连, 赵开军, 章琦, 樊颖伦, 周少川, 朱立煌. 水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择. 作物学报, 2003, 29: 501–507



Pan H J, Wang C L, Zhao K J, Zhang Q, Fan Y L, Zhou S C, Zhu L H. Molecular mapping by PCR-based markers and marker-assisted selection of Xa23 a bacterial blight resistance gene in rice. Acta Agron Sin, 2003, 29: 501–507 (in Chinese with English abstract)



[20]Zhou Y L, Veronica N E U, Zhang C H, Cheng L R, Wang L, Chen K, Gao X Q, Sun Y, Chen J J, Zhu L H, Zhang Q, Xu J L, Li Z K. Use of a novel gene Xa23 derived from wild rice (O. rufipogon) in improvement of bacterial blight resistance of hybrid rice in China. Crop Prot, 2011, 30: 637–644



[21]Zhou Y L, Xu J L, Zhou S C, Yu J, Xie X W, Xu M R, Sun Y, Zhu L H, Fu B Y, Gao Y M, Li Z K. Pyramiding Xa23 and Rxo1 for resistance to two bacterial diseases into an elite indica rice variety using molecular approaches. Mol Breed, 2009, 23: 279–287



[22]Wang C, Fan Y, Zheng C, Qin T F, Zhang X P, Zhao K J. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23. Mol Genet Genomics, 2014, 289: 745–753



[23]Yoshimura S, Yoshimura A, Lwata N, Iwata N, McCouch S R, Abenes M L, Baraoidan M R, Mew T W, Nelson R J. Tagging and combing bacterial blight resistance genes in rice using BAPD and RFLP markers. Mol Breed, 1995, 1: 375–387



[24]Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95: 313–320



[25]曾列先, 黄少华, 伍尚忠. IRBB21 (Xa21)对广东稻白叶枯病菌5个小种的抗性反应. 植物保护学报, 2002, 29: 97–100



Zeng L X, Huang S H, Wu S Z. Five bacterial blight race to IRBB21 (Xa21) resistance reaction from Guangdong Province. Acta Phytophy Sin, 2002, 29: 97–100 (in Chinese)



[26]Marella L S, George M L C, Vera C C M, Bernardo A, Nelson R J, Leung H, Reddy J N, Sridhar R. Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis, 2001, 85: 506–512



[27]郑康乐, 黄宁. 标记辅助选择在水稻改良中的应用前景. 遗传学报, 1997, 19(2): 40–44



Zheng K L, Huang N. Outlook on the application of marker-assisted selection in rice improvement. J Genet Genomics, 1997, 19(2): 40–44 (in Chinese)

[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[3] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[4] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[5] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[6] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[7] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[8] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[9] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[10] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[11] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[12] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[13] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[14] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[15] 姚嘉瑜,张立武,赵捷,徐益,祁建民,张列梅. 黄麻全基因组SSR鉴定与特征分析[J]. 作物学报, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!