作物学报 ›› 2015, Vol. 41 ›› Issue (05): 692-697.doi: 10.3724/SP.J.1006.2015.00692
卓大龙1,2,胡丹丹1,2,张帆2,张帆2,*,石英尧1,*,高用明2,周永力2,黎志康2
ZHUO Da-Long1,2,HU Dan-Dan1,2,ZHANG Fan2,ZHANG Fan2,*,SHI Ying-Yao1,*,GAO Yong-Ming2,ZHOU Yong-Li2,LI Zhi-Kang2
摘要:
Xa39是一个对水稻白叶枯病具有广谱抗性的显性新基因,在水稻抗白叶枯病育种中具有良好的应用价值和前景。在前期研究中,我们将该基因定位在水稻第11染色体上。本研究利用携带Xa39基因的供体亲本FF329与受体亲本BT4、BT6、BT12、BT18杂交培育出4FL10、4FL14、4FL17、4FL21四个育种F2分离群体,结合人工接种抗病性鉴定,对3个与Xa39紧密连锁的分子标记进行分子标记辅助选择(MAS)有效性比较,筛选高效的PCR分子标记。结果表明,标记RM26985和RM206在上述4个群体中的MAS准确率分别达到95.81%和93.61%,同时使用两者其准确率达到95.59%,上述2个标记在水稻白叶枯病抗性改良育种中可以提高Xa39的选择效率.
[1]Mew T W. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359–382 [2]Zhang F, Zhuo D L, Zhang F, Huang L Y, Wang W S, Xu J L, Vera C C, Li Z K, Zhou Y L. Xa39, a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathol, 2014, DOI: 10.1111/ppa.12283 [3]张帆, 周永力. 白叶枯病菌(Xanthomonas oryzae pv. oryzae)与水稻抗病基因识别的分子机理. 中国水稻科学, 2013, 27: 305–311 Zhang F, Zhou Y L. Molecular mechanisms of rice resistance genes recognized by Xanthomonas oryzae pv. oryzae. Chin J Rice Sci, 2013, 27: 305–311 (in Chinese with English abstract) [4]罗生香, 张帆, 陈现朝, 靳明山, 周永力, 黎志康. 26个水稻新品种(系)对白叶枯病抗性的鉴定和评价. 植物遗传资源学报, 2013, 14: 390–394 Luo S X, Zhang F, Chen X C, Jin M S, Zhou Y L, Li Z K. Evaluation of 26 rice cultivas (lines) resistance to bacterial blight at the tillering and booting stages. J Plant Genet Resour, 2013, 14: 390–394 (in Chinese with English abstract)[5]Lee S W, Choi S H, Han S S, Lee D G, Lee B Y. Distribution of Xanthomonas oryzae pv. oryzae strains virulent to Xa21 in Korea. Phytopathology, 1999, 89(10): 928–933 [6]范宏环, 王林友, 张礼霞, 于新, 王曦, 金庆生, 王建军. 通过分子标记辅助选择技术选育携有水稻白叶枯病抗性基因Xa23的水稻株系. 中国水稻科学, 2011, 25: 331–334 Fan H L, Wang L Y, Zhang L X, Yu X, Wang Y, Jin Q S, Wang J J. Breeding of rice lines with bacterial blight resistance gene Xa23 by using marker-assisted selection. Chin J Rice Sci, 2011, 25: 331–334 (in Chinese with English abstract)[7]章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111–119 Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111–119 (in Chinese with English abstract) [8]Khan M A, Naeem M, Iqbal M. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol, 2014, 139: 27–37 [9]Zhou Y L, Uzokwe V N E, Zhang C H, Cheng L H, Wang L, Chen K, Gao X Q, Sun Y, Chen J J, Zhu L H, Zhang Q, Gauhar A, Xu J L, Li Z K. Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot, 2011, 30: 637–644 [10]Luo Y C, Sangha J S, Wang S H, Li Z F, Yang J B, Yin Z C. Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol Breed, 2012, 30: 1601–1610 [11]闫成业, 刘艳, 牟同敏. 分子标记辅助选择聚合Xa7, Xa21和cry1C*基因改良杂交水稻金优207的白叶枯病和螟虫抗性. 杂交水稻, 2013, 28(5): 52–59Yan C Y, Liu Y, Mou T M. Molecular marker-assisted selection aggregation Xa7, Xa21 and cry1C* genes to modify bacterial blight and stem borer resistance of hybrid rice Jinyou 207. Hybrid Rice, 2013, 28(5): 52–59 (in Chinese)[12]Li Z K, Arif M, Zhong D B, Fu B Y, Xu J L, Domingo-Rey J, Ali J, Vijayakumar C H M, Yu S B, Khush G S. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994–7999 [13]Shanti M L, George M L C, Cruz C M V, Bernardo M A, Nelson R J, Leung H, Reddy J N, Sridhar R. Identification of resistance genes effective against rice bacterial blight pathogen in eastern. India Plant Dis, 2001, 85: 506–512 [14]Kauffman H E, Reddy A P K, Hsieh S P Y, Merca S D. A improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzea. Plant Dis Rep, 1973, 57: 537–541 [15]Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification and fine mapping of resistance gene to Maganaporthe oryzae in a space-induced rice mutant. Mol Breed, 2011, 28: 303–312 [16]邓其明, 周宇爝, 蒋昭雪, 万映秀, 赵斌, 杨莉, 李平. 白叶枯病抗性基因Xa21, Xa4和Xa23的聚合及其效应分析. 作物学报, 2005, 31: 1241–1246 Deng Q M, Zhou Y J, Jiang Z X, Wan Y X, Zhao B, Yang L, Li P. Pyramiding bacterial blight (BB) resistance genes (Xa21, Xa4 and Xa23) into rice and its effect analysis. Acta Agron Sin, 2005, 31: 1241–1246 (in Chinese with English abstract)[17]何风华, 席章营, 曾瑞珍, Akshay T, 张桂权. 利用高代回交和分子标记辅助选择建立水稻单片段代换系. 遗传学报, 2005, 32: 825–831 He F H, Xi Z Y, Zeng R Z, Akshay T, Zhang G Q. Developing single segment substitution lines (SSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin, 2005, 32: 825–831 (in Chinese with English abstract)[18]潘晓飚, 陈凯, 张强, 黄善军, 谢留杰, 李美, 孟丽君, 徐正进, 徐建龙, 黎志康. 分子标记辅助选育水稻抗白叶枯病和稻瘟病多基因聚合恢复系. 作物学报, 2013, 39: 1582–1593 Pan X B, Chen K, Zhang Q, Huang S J, Xie L J, Li M, Meng L J, Xu Z J, Xu J L, Li Z K. Developing restorer liner pyramiding different resistant genes to blast and bacterial leaf blight by maker-assisted selection in rice. Acta Agron Sin, 2013, 39: 1582–1593 (in Chinese with English abstract)[19]潘海军, 王春连, 赵开军, 章琦, 樊颖伦, 周少川, 朱立煌. 水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择. 作物学报, 2003, 29: 501–507Pan H J, Wang C L, Zhao K J, Zhang Q, Fan Y L, Zhou S C, Zhu L H. Molecular mapping by PCR-based markers and marker-assisted selection of Xa23 a bacterial blight resistance gene in rice. Acta Agron Sin, 2003, 29: 501–507 (in Chinese with English abstract)[20]Zhou Y L, Veronica N E U, Zhang C H, Cheng L R, Wang L, Chen K, Gao X Q, Sun Y, Chen J J, Zhu L H, Zhang Q, Xu J L, Li Z K. Use of a novel gene Xa23 derived from wild rice (O. rufipogon) in improvement of bacterial blight resistance of hybrid rice in China. Crop Prot, 2011, 30: 637–644 [21]Zhou Y L, Xu J L, Zhou S C, Yu J, Xie X W, Xu M R, Sun Y, Zhu L H, Fu B Y, Gao Y M, Li Z K. Pyramiding Xa23 and Rxo1 for resistance to two bacterial diseases into an elite indica rice variety using molecular approaches. Mol Breed, 2009, 23: 279–287 [22]Wang C, Fan Y, Zheng C, Qin T F, Zhang X P, Zhao K J. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23. Mol Genet Genomics, 2014, 289: 745–753[23]Yoshimura S, Yoshimura A, Lwata N, Iwata N, McCouch S R, Abenes M L, Baraoidan M R, Mew T W, Nelson R J. Tagging and combing bacterial blight resistance genes in rice using BAPD and RFLP markers. Mol Breed, 1995, 1: 375–387 [24]Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95: 313–320[25]曾列先, 黄少华, 伍尚忠. IRBB21 (Xa21)对广东稻白叶枯病菌5个小种的抗性反应. 植物保护学报, 2002, 29: 97–100 Zeng L X, Huang S H, Wu S Z. Five bacterial blight race to IRBB21 (Xa21) resistance reaction from Guangdong Province. Acta Phytophy Sin, 2002, 29: 97–100 (in Chinese)[26]Marella L S, George M L C, Vera C C M, Bernardo A, Nelson R J, Leung H, Reddy J N, Sridhar R. Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis, 2001, 85: 506–512[27]郑康乐, 黄宁. 标记辅助选择在水稻改良中的应用前景. 遗传学报, 1997, 19(2): 40–44 Zheng K L, Huang N. Outlook on the application of marker-assisted selection in rice improvement. J Genet Genomics, 1997, 19(2): 40–44 (in Chinese) |
[1] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[2] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[3] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[4] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[5] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[6] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[7] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
[8] | 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642. |
[9] | 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340. |
[10] | 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913. |
[11] | 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506. |
[12] | 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188. |
[13] | 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510. |
[14] | 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521. |
[15] | 姚嘉瑜,张立武,赵捷,徐益,祁建民,张列梅. 黄麻全基因组SSR鉴定与特征分析[J]. 作物学报, 2019, 45(1): 10-17. |
|