作物学报 ›› 2015, Vol. 41 ›› Issue (05): 708-716.doi: 10.3724/SP.J.1006.2015.00708
宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕
SONG Zhong-Jian,ZHANG Deng-Feng*,LI Yong-Xiang,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu
摘要:
BiP (binding protein)基因编码的蛋白是一类重要的分子伴侣,在动植物的逆境胁迫响应过程中具有重要的作用。从玉米抗旱自交系旱21中分离到分子伴侣基因ZmBiP2,序列分析结果显示该基因开放阅读框长1989 bp,编码含663个氨基酸的蛋白,包含热激蛋白家族特有的TVIGIDLGTTYSC保守结构域和ATP结合位点。实时荧光定量PCR结果显示,ZmBiP2基因在玉米的雄穗和子房中表达量最高;在盐、甘露醇胁迫条件下,该基因在植株的地上部分上调表达。过量表达ZmBiP2基因的拟南芥转基因株系在种子萌发时期对盐和甘露醇胁迫的耐受能力减弱,在苗期对盐胁迫敏感。推测在植物响应非生物胁迫的过程中,过量表达的ZmBiP2蛋白可能发挥负调节蛋白的功能。
[1]Flynn G C, Pohl J, Flocco M T, Rothman J E. Peptide-binding specificity of the molecular chaperone BiP. Nature, 1991, 353: 726–730[2]Kalinski A, Rowley D L, Loer D S, Foley C, Buta G, Herman E M. Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta, 1995, 195: 611–621[3]Rutkowski D T, Kaufman R J. A trip to the ER: coping with stress. Trends Cell Biol, 2004, 14: 20–28[4]Laitusis A L, Brostrom M A, Brostrom C O. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J Biol Chem, 1999, 274: 486–493[5]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol, 1996, 32: 191–222[6]Anderson J V, Li Q B, Haskell D W, Guy C L. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol, 1994, 104: 1359–1370[7]Fontes E P B, Silver C J, Carolino S M B, Figueiredo J E F, Batista D P O. A soybean binding protein (BiP) homolog is temporally regulated in soybean seeds and associates detectably with normal storage proteins in vitro. Brazilian J Genet, 1996, 19: 305–312[8]Cascardo J C, Buzeli R A, Almeida R S, Otoni W C, Fontes E P B. Differential expression of the soybean BiP gene family. Plant Sci, 2001, 160: 273–281[9]Park C J, Bart R, Chern M, Canlas P E, Bai W, Ronald P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One, 2010, 5(2): e2962[10]Alvim F C, Carolino S M B, Cascardo J C M, Nunes C C, Martinez C A, Otoni W C, Fontes E P B. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol, 2001, 126: 1042–1054[11]Valente M A, Faria J A, Soares-Ramos J R, Reis P A, Pinheiro G L, Piovesan N D, Fontes E P. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot, 2009, 60: 533–546[12]Russell L W, Obrian G R, Boston R S. Comparative analysis of Bip gene expression in maize endosperm. Gene, 1997, 204: 105–113[13]Chappell T G, Welch W J, Schlossman D M, Palter K B, Schlesinger M J, Rothman J E. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell, 1986, 45: 3–13[14]Munro S, Pelham H R. An Hsp70-like protein in the ER: identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986, 46: 291–300[15]Chang S C, Wooden S K, Nakaki T, Kim Y K, Lin A Y, Kung L, Lee A S. Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc Natl Acad Sci USA, 1987, 84: 680-684[16]Hendershot L M, Kearney J F. A role for human heavy chain binding protein in the developmental regulation of immunoglobin transport. Mol Immunol, 1988, 25: 585–595[17]Stevenson M A, Calderwood S K. Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Mol Cell Biol, 1990, 10: 1234–1238[18]Heijne G V. Towards a comparative anatomy of N-terminal topogenic protein sequences. J Mol Biol, 1986, 189: 239–242[19]Pelham H R. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci, 1990, 15: 483–486[20]Valente M A, Faria J, Soares-Ramos J, Reis P, Pinheiro G, Piovesan N, Morais A, Menezes C, Cano M, Fietto L, Loureiro M, Aragao F, Fontes E. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot, 2009, 60: 533–546[21]Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J, 2011, 65: 675–689 |
[1] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[2] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[3] | 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148. |
[4] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[5] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[6] | 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543. |
[7] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[8] | 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30. |
[9] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[10] | 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808. |
[11] | 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356. |
[12] | 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479. |
[13] | 刘会云,王婉晴,李欣,王轲,王龙,杜丽璞,晏月明,叶兴国. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响[J]. 作物学报, 2017, 43(05): 691-700. |
[14] | 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478. |
[15] | 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695. |
|