欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1201-1211.doi: 10.3724/SP.J.1006.2015.01201

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

枯萎病菌诱导感、抗陆地棉品种的基因表达谱分析

韩泽刚,赵曾强,李会会,张析,李潇玲,张薇*   

  1. 石河子大学农学院 / 棉花分子育种实验室,新疆石河子 832000
  • 收稿日期:2014-11-06 修回日期:2015-05-04 出版日期:2015-08-12 网络出版日期:2015-05-15
  • 基金资助:

    本研究由国家自然基金(31260358)和农业部转基因生物新品种培育重大专项(2011ZX08005-005)项目资助。

Expression Profiling Analysis between Resistant and Susceptible Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium Wilt

HAN Ze-Gang,ZHAO Zeng-Qiang,LI Hui-Hui,ZHANG Xi,LI Xiao-Ling,ZHANG Wei*   

  1. Agricultural College of Shihezi University / Laboratory of Cotton Molecular Breeding, Shihezi 832000, China
  • Received:2014-11-06 Revised:2015-05-04 Published:2015-08-12 Published online:2015-05-15

摘要:

选用陆地棉抗枯萎病品种中棉所12和感枯萎病品种新陆早7号,利用Solexa高通量测序技术分析棉花幼苗受到枯萎病菌侵染后3 h6 h根部组织的基因表达谱。中棉所12受病菌侵染后3 h0 h相比,6 h0 h相比以及6 h3 h相比,分别鉴定出444754812559个差异表达基因;新陆早7号分别鉴定出861567272078个差异表达基因;2个品种比较,在3 h6 h分别鉴定出1879个和500个差异表达基因。基因功能分析表明,差异表达基因划分为生物学过程、细胞组分和分子功能注释本体,并进一步细分为48个功能类别。代谢通路分析显示,中棉所12和新陆早7号在枯萎病菌侵染后的6 h0 h相比鉴定出的Pathway最多,均有126条;在枯萎病菌侵染后6 h,从2个品种鉴定出的Pathway最少,仅有89条。各个比对组的Pathway涉及的基因可被划分为次生代谢产物的生物合成、多糖的生物合成和代谢、环境适应和免疫系统等13类。在环境适应和免疫系统分类中存在着植物与病原菌相互作用Pathway,涉及到996个已知功能的差异表达基因,有444个基因上调表达,552个基因下调表达。其中,差异表达基因最多的是WRKY转录因子家族基因,其次为丝氨酸/苏氨酸蛋白激酶基因,而DNA损伤修复/耐受性蛋白,JAZ1RAR1RPM1互作蛋白,S位点的特异性糖蛋白S6前体以及钙牵引蛋白等6类基因参与该Pathway的数目最少。最后随机抽取6个基因进行实时荧光定量PCR验证,其结果与测序结果一致。

关键词: 陆地棉, 枯萎病, Solexa, 基因表达谱

Abstract:

Fusarium Wilt resistant cotton cultivar Zhongmiansuo 12 and susceptible cultivar Xinluzao 7 were used to analyze the gene expression profiling of root tissues at three hours and six hours after the seedlings infection by Fusarium Wilt using Solexa sequencing technology. Compared with no infection, 4447 and 5481 differential genes after three hours and six hours infected by Fusarium Wilt were identified, and compared six hours with three hours, 2559 differential genes were identified in Zhongmiansuo 12; while 8615, 6727 and 2078 was respectively identified in Xinluzao 7. There were 1879 and 500 differential genes in three hours and six hours after infection when the two cultivars were compared. According to the Gene Ontology, these genes were divided into these groups of biological process, cellular component and molecular function; then further subdivided into 48 functional categories. By analyzing the pathways, the most of them were identified in 6 h/0 h after infection between Zhongmiansuo 12 and Xinluzao 7, which were 126 each in the two cultivars; the least of pathways were at 6 h after infection in two cultivars, which was 89 only. However, all the pathways in each comparison group could be classified into 13 categories, such as biosynthesis of other secondary metabolites, glycan biosynthesis and metabolism, environmental adaptation, Immune system. A pathway, named plant-pathogen interaction in the environmental adaptation and immune system category, was involved in 996 differential genes; and the number of up regulated genes was 444 and that of down regulated genes was 552. The most differential genes were in WRKY transcription factor family, the serine/threonine kinase had the medium number of differential genes, while DNA damage-repair/ toleration protein, JAZ1, RAR1, RPM1-interacting protein, S locus specific glycoprotein S6 precursor and caltractin had the least genes. Finally, six expressed genes were randomly relected to ralidate the results by RT-PCR which were consistent with those by Solexa sequencing.

Key words: Gossypium hirsutum, Fusarium wilt, Solexa, Expression profiling

[1]吴征彬, 杨业华, 刘小丰, 王强. 枯萎病对棉花产量和纤维品质的影响. 棉花学报, 2004, 16: 236–239



Wu Z B, Yang Y H, Liu X F, Wang Q. Effect of Fusarium Wilt on the cotton yield and fiber quality. Cott Sci, 2004, 16: 236–239 (in Chinese with English abstract)



[2]徐秋华, 张献龙, 聂以春, 冯纯大. 我国棉花抗枯萎病品种的遗传多样性分析. 中国农业科学, 2002, 35: 272–276



Xu Q H, Zhang X L, Nie Y C, Feng C D. Genetic diversity evaluation of cultivars (G. hirsumtum L.)resistant to fusarium wilt by RAPD markers. Sci Agric Sin, 2002, 35: 272–276 (in Chinese with English abstract)



[3]刘坤. 海岛棉ERF族B3和B1亚组转录因子基因的克隆与特征分析. 中国农业科学院硕士学位论文, 北京, 2011. pp 26–30



Liu K. Gene Cloning and Characterization of B3 and B1 Subgroup Transcription Factors of ERF Family from Gossypium barbadense L. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2011. pp 26–30 (in Chinese with English abstract)



[4]韩庆典, 陈志伟, 段远霖, 兰涛, 官华忠, 周元昌, 吴为人. 利用基因芯片检测水稻细菌性条斑病抗性相关基因. 分子植物育种, 2008, 6: 239–244



Han Q D, Chen Z W, Duan Y L,Lan T, Guan H Z, Zhou Y C, Wu W R. Detection of genes related to resistance to bacterial leaf streak in rice using microarray. Mol Plant Breed, 2008, 6: 239–244 (in Chinese with English abstract)



[5]何兰兰, 柴蒙亮, 韩泽刚, 赵曾强, 张薇. 棉花抗枯萎病相关ERF-B3亚组转录因子的克隆与表达. 西北植物学报, 2013, 33: 2375–238



He L L, Chai M L, Han Z G, ZHAO Z Q, Zhang W. Cloning and expression of ERF-B3 subgroup transcription factor related to resistance Fusarium Wilt in cotton. Acta bot bor-occid Sin, 2013, 33: 2375–2381 (in Chinese with English abstract)



[6]谢为博. 基于表达谱芯片和新一代测序技术的高通量基因分型方法的开发. 华中农业大学博士学位论文, 湖北武汉, 2010. pp17–18



Xie W B. Development of High Throughput Genotyping Methods Based on DNA Microarray and New Generation Sequencing Technologies. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2010. pp 17–18 (in Chinese with English abstract)



[7]Wu J, Zhang Y L, Zhang H Q, Huang H, Kevin M Folta, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC plant biol, 2010, 10: 234



[8]BaiT T, Xie W B, Zhou P P, Wu Z L, Xiao W C, Zhou L,Sun J, Ruan X L, Li H P. Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PloS One, 2013, 8: e73945



[9]Yu S C, Zhang F L,Yu Y J, Zhang D S, Zhao X Y, Wang W H. Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L.ssp.pekinensis) by tag sequencing. Plant Mol Bio Rep, 2012, 30: 17–28



[10]Pang T, Ye C Y, Xia X L, Yin, W L. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Gene, 2013, 14: 488–503



[11]Shan X H , Li Y D, Jiang Y, Jiang Z L, Hao W Y, Yuan. Y P. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Rep, 2013, 31: 1485–1491



[12]Andrew J. C, Liu D C, Ramil M, Yue I C H, Rachid S. Transcriptome profiling of leaf elongation zone under drought in contrasting rice cultivars. PloS One, 2013, 8: e54537



[13]Chen J H, Song Y P, Zhang H, ZhangD Q. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep, 2013, 31: 946–962



[14]Wang Y, Xu L, Chen Y L, Shen H, Gong Y Q, Cecilia L, Liu L W. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PloS One, 2013, 8: e66539



[15]彭姗, 吕学莲, 高峰, 李国英, 李晖. 一种新的棉花黄,枯萎病快速接种方法的研究. 棉花学报, 2008, 20: 174–178



Peng S, Lü X L, Gao F, Li G Y, Li H. Study on a new rapid inoculation method for verticillium wilt and fusarium wilt of cotton. Cott Sci, 2008, 20: 174–178 (in Chinese with English abstract)



[16]胡根海, 喻树迅. 利用改良的CTAB法提取棉花叶片总RNA. 棉花学报, 2007, 19: 69–70



Hu G H, Yu S X. Extraction of high-quality total RNA in cotton leaf with improved CTAB method. Cotton Sci, 2007, 19: 69–70(in Chinese with English abstract)



[17]Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Natl Meth, 2008, 5: 621–628



[18]Audic S, Claverie J M. The significance of digital gene expression profiles. Geno Res, 1997, 7: 986–995



[19]Benjamini Y, Drai D, Elmer G, Kafkafid N, Golanib I. Controlling the false discovery rate in behavior genetics research. Beha Bra Res, 2001, 125: 279–284



[20]王刚. 棉花幼苗盐胁迫条件下Solexa转录组测序结果的分析及验证. 山东农业大学硕士学位论文, 山东泰安, 2011. pp 36–38



Wang G. Transcription Analysis of Young Cotton (Gossypium hirsutum) Seeding under Salt Stress via Solexa Sequencing. MS Thesis of Graduate School of Shandong Agricultural University, Tai’an, China, 2011. pp 36–38 (in Chinese with English abstract)



[21]陈欢, 杨美英, 王真慧, 孙旸, 王刚, 魏玮, 关瑜, 王法微, 李海燕, 陈光. 大豆籽粒不同发育时期基因表达谱分析. 中国油料作物学报, 2012, 34: 129–135



Chen H, Yang M Y, Wang Z H, Sun Y, Wang G, Wei W, Guan Y, Wang F W, Li H Y, Chen G. Gene expression profile of developing soybean seeds. Chin J Oil Crop Sci, 2012, 34: 129–135 (in Chinese with English abstract)



[22]Wei M M, Song M Z, Fan S L, Yu S X. Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Gen, 2013, 14: 97



[23]罗红丽, 陈银华. 植物抗病反应相关转录因子的研究进展. 热带生物学报, 2011, 2: 83–88



Luo H L, Chen Y H. Advance on transcription factors involved in plant disease resistance response. Chin J Trop Crops, 2011, 2: 83–88 (in Chinese with English abstract)



[24]郭艳玲, 张鹏英, 郭默然, 陈靠山. 次生代谢产物与植物抗病防御反应. 植物生理学报, 2012, 48: 429–434



Guo Y L, Zhang P Y, Guo M R, Chen K S.Secondary metabolites and plant defence against pathogenic disease. Plant Physiol J, 2012, 48: 429–434 (in Chinese with English abstract)



[25]Pieterse C M J, Leon-Reyes A, Van der E S, Van W S C M. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308–316



[26]Anderson J P, Badruzsaufari E, Schenk P M, Manners J M, Desmond O J, Ehlert C, Maclean D J, Ebert P R, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 2004, 16: 3460–3479



[27]张春宝, 赵丽梅, 赵洪锟, 董英山. 植物蛋白激酶研究进展. 生物技术通报, 2011 (10): 17–23



Zhang C B, Zhao L M, Zhao H K, Dong Y S. Advances in plant protein kinase. Biol Bull, 2011 (10): 17–23 (in Chinese with English abstract)



[28]Song W Y , Wang G L, Chen L L. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804–1806



[29]周庆红, 李成琼, 匡全. 植物蛋白激酶研究进展. 生物学杂志, 2003, 20(3): 1–4



Zhou Q H, Li C Q, Kuang Q. Advances in plant protein kinase. J Biol, 2003, 20(3): 1–4 (in Chinese with English abstract)



[30]'t Hoen P A C, Ariyurek Y, Thygesen H H, Vreugdenhil E, Vossen R H, de Menezes R X, Boer J M, van Ommen G B, den Dunnen J T. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nuc Acids Res, 2008, 36: e141

[1] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[4] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[5] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[6] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[7] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[8] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[9] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[10] 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639.
[11] 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649.
[12] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[13] 黄启秀,曲延英,姚正培,李梦雨,陈全家*. 海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关[J]. 作物学报, 2017, 43(12): 1791-1801.
[14] 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745.
[15] 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!