矮蓝麦,赤霉酸敏感型,遗传分析,Rht22,圆锥小麦," /> 矮蓝麦,赤霉酸敏感型,遗传分析,Rht22,圆锥小麦,"/>
作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1899-1905.doi: 10.3724/SP.J.1006.2015.01899
周强1,2,3,袁中伟1,张连全1,甯顺腙1,任勇1,2,3,陶军1,2,3,李生荣2,3,刘登才1,*
ZHOU Qiang1,2,3,YUAN Zhong-Wei1,ZHANG Lian-Quan1,NING Shun-Zong1,REN Yong1,2,3,TAO Jun1,2,3,LI Sheng-Rong2,3,LIU Deng-Cai1,*
摘要:
四倍体圆锥小麦(Triticum turgidum L. ssp. turgidum)地方品种矮蓝麦是我国重要的小麦矮秆基因资源,经鉴定其矮秆特性对外源赤霉酸敏感。2012年配制矮蓝麦与2个高秆圆锥小麦的正反交组合,2012—2013年在四川绵阳分别种植F1、F2代和F2:3家系,对株高的遗传分析表明,矮蓝麦的矮秆性状受1对隐性基因控制。利用BSA法构建高秆和矮秆池筛选多态性SSR标记,并对矮蓝麦/青稞麦F2分离群体进行连锁分析,将目标基因定位于7AS染色体上,与标记GWM471的遗传距离为2.5 cM。矮蓝麦与矮秆番麦正反交的F1和F2群体表现非常相似的株高变异特征,初步推测矮蓝麦的矮秆基因是Rht22;进一步用高通量SNP和DArT标记对两品种进行全基因组扫描,发现二者的遗传相似性高达98.7%~99.3%。因此认为,历史上矮蓝麦和矮秆番麦可能是同一品种,是通过人为交流而传播到不同地方。矮蓝麦携带的矮秆基因在人工合成六倍体小麦遗传背景中降低株高能力中等或较弱,在育种中需要聚合其他矮秆基因而被利用。
[1]Hedden P. The genes of the Green Revolution. Trends Genet, 2003, 19: 5–9 [2]Mathews K L, Chapman S C, Trethowan R, Singh R P, Crossa J, Pfeiffer W, Ginkel M, DeLacy I. Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes. Crop Sci, 2006, 46: 603–613 [3]万平, 王刚, 刘大钧. 麦类作物矮秆基因遗传学和分子遗传学研究利用进展. 麦类作物, 1998, 18: 9–11 Wan P, Wang G, Liu D J.The research and utilization progress of dwarfing gene genetics and molecular genetics for the Tritical crops. Tritical Crops, 1998, 18: 9–11 (in Chinese) [4]Ahmad M, Sorrells M E. Distribution of microsatellite alleles linked to Rht8 dwarfing genes in wheat. Euphytica, 2002, 123: 235–240 [5]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013–2014 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp [6]Burner A, Korzun V, Worland A J. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphyt ica, 1998, 100: 245-248 [7]继增, 丁寿康, 李月华, 张辉. 中国小麦的主要矮秆基因及矮源的研究. 中国农业科学, 1992, 25: 1–5 Jia J Z, Ding S K, Li Y H, Zhang H. Studies of main dwarf genes and dwarf resources on Chinese wheat. Sci Agric Sin, 1992, 25: 1–5 (in Chinese with English abstract) [8]Gale M D, Youssefian S. Dwarfing genes in wheat. In: Russell G E ed. Progress in Plant Breeding (1). Butterworths & London, 1985, pp 1–35 [9] Allan R E, Vogel O A, Craddock J C. Comparative response to gibberellic acid of dwarf, semi-dwarf and standard short and tall winter wheat varieties. Agron J, 1959, 51: 737–740 [10]苏瑾, 彭正松, 杨在君, 魏淑红, 廖明莉, 吴凯. 小麦新矮源矮秆番麦的赤霉素敏感性分析. 西北农业学报, 2012, 21: 28–33 Su J, Peng Z S, Yang Z J, Wei S H, Liao M L, Wu K. Analysis on GA sensitivity of new wheat dwarfing sources Aiganfanmai. Acta Agric Boreali-Occident Sin, 2012, 21: 28–33 (in Chinese with English abstract) [11]Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B, Taba S, Warburton M. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA, 1999, 96: 5937–5943 [12]Ginkel M van, Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res, 2007, 104: 86–94 [13]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539–546 [14]Warburton M L, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, Ginkel M van. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 2006, 149: 289–301 [15]张连全. 小麦异源六倍化过程及其在遗传育种中的应用. 四川农业大学博士学位论文, 四川雅安, 2007 Zhang L Q. Allohexaploidization of common wheat and its application in genetics and breeding. PhD Dissertation of Sichuan Agricultural University, Ya’an, China, 2007 (in Chinese with English abstract) [16]邹裕春, 杨武云, 朱华忠, 邹裕春, 杨武云, 朱华忠, 杨恩年, 蒲宗君, 伍铃, 张颙, 汤永禄, 黄钢, 李跃建, 何中虎, Singh R, Rajaram S. CIMMYT种质及育种技术在四川小麦品种改良中的利用. 西南农业学报, 2007, 20: 183–190 Zou Y C, Yang W Y, Zhu H Z, Yang E N, Pu Z J, Wu L, Zhang Y, Tang Y L, Huang G, Li Y J, He Z H, Singh R, Rajaram S. Utilization of CIMMYT germplasm and breeding technology in wheat improvement in Sichuan, China. Southwest China J Agric Sci, 2007, 20: 183–190 (in Chinese with English abstract) [17]董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000. pp 20, 43–44 Dong Y C, Zheng D S. Wheat Genetic Resources of China. Beijing: China Agriculture Press, 2000. pp 20, 43–44 (in Chinese) [18]田良才. 矮兰麦矮秆基因的初步分析. 作物品种资源, 1987, (4): 1–3 Tian L C. Preliminary analysis on the dwarfing gene of Ailanmai. Crop Genet Resour, 1987, (4): 1–3 (in Chinese) [19]郭保宏.小麦矮秆遗传型对赤霉酸反应的初步研究. 作物品种资源, 1989, (3): 13-15 Guo B H. Preliminary study on wheat dwarf genotype to GAs treatment. Crop Genet Resour, 1989, (3): 13–15 (in Chinese) [20]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15 [21]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832 [22]Gill K S, Gill B S, Endo T R, Boyko E V. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics, 1996, 143: 1001–1012 [23]刘光欣, 周永红, 郑有良, 杨瑞武, 丁春邦. 矮秆波兰小麦矮秆性状对赤霉酸反应的研究. 四川农业大学学报, 2002, 20: 81–83 Liu G X, Zhou Y H, Zheng Y L, Yang R W, Ding C B. The reaction of hormone gibberellic acid in dwarfing Polish wheat (Triticum turgidum concv. polonicum) from Tulufan, Xinjiang. J Sichuan Agric Univ, 2002, 20: 81–83 (in Chinese with English abstract) [24]Takeda K. Internode elongation and dwarfism in some Gramineous plants. Gamma Field Symposium, 1977, 16: 1–8 [25]Lanning S P, Martin J M, Stougaard R N, Guillen-Portal F R, Blake N K, Sherman J D, Robbins A M, Kephart K D, Lamb P, Carlson G R, Pumphrey M, Talbert L E. Evaluation of near-isogenic lines for three height-reducing genes in hard red spring wheat. Crop Sci, 2012, 52: 1145–1152 [26]Tang N, Jiang Y, He B R, Hu Y G. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China, 2009, 8: 1028–1038 [27]Worland A J, Petrovic S. The gibberellic acid insensitive dwarfing gene from the wheat variety Saitama 27. Euphytica, 1988, 38: 55–63 [28]Flintham J E, Börner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997, 128: 11–25 [29]Rebetzke G J, Ellis M H, Bonnett D G, Mickelson B, Condon A G, Richards R A. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res, 2012, 126: 87–96 [30]刘秉华, 王山荭, 杨丽. 中国春小麦株高、育性近等基因系的建立及应用. 遗传, 1999, 21: 31–33 Liu B H, Wang S H, Yang L. Development and utilization of the isogenic lines of plant height and fertility in wheat cv. Chinese Spring. Hereditas (Beijing), 1999, 21: 31–33 (in Chinese with English abstract) [31]Bomer A, Worland A J, Plaschke J, Schumann E, Law C N. Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed, 1993, 111: 204–206 [32]Kertesz Z, Flintham J E, Gale M D. Effects of Rht dwarfing genes on wheat grain yield and its components under eastern European conditions. Cereal Res Commun, 1991, 19: 297–304 [33]Wang Y S, Chen L, Du Y Y, Yang Z Y, Condon A G, Hu Y G. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res, 2014, 162: 39–47 [34]Peng Z S, Li X, Yang Z J, Liao M L. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011, 10: 2349–2357 [35]Peng Z S, Su Z X, Cheng K C. Characterization of dwarfing trait in the tetriploid wheat landrace Aiganfanmai. Wheat Inf Ser, 1999, 89: 7–1 |
[1] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[2] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[3] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[4] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[5] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[6] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
[7] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[8] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
[9] | 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118. |
[10] | 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655. |
[11] | 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195. |
[12] | 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定[J]. 作物学报, 2018, 44(04): 614-619. |
[13] | 张天雨,周春雷,刘喜,孙爱伶,曹鹏辉,Thanhliem NGUYEN,田云录,翟虎渠,江玲. 一个水稻温敏黄化突变体的表型分析和基因定位[J]. 作物学报, 2017, 43(10): 1426-1433. |
[14] | 李自壮,徐乾坤,余海平,周亭亭,薛大伟,曾大力,郭龙彪,钱前,任德勇. 水稻淡黄叶矮化突变体yld的遗传分析及基因定位[J]. 作物学报, 2017, 43(04): 522-529. |
[15] | 肖艳华**,陈新龙**,杜丹,邢亚迪,张天泉,祝毛迪,刘明明,朱小燕,桑贤春,何光华*. 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位[J]. 作物学报, 2017, 43(04): 473-482. |
|