欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1727-1732.doi: 10.3724/SP.J.1006.2016.01727

• 研究简报 • 上一篇    

滴灌甜菜对块根膨大期水分亏缺的补偿性响应

李阳阳,费聪,崔静,王开勇,马富裕*,樊华*   

  1. 新疆石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
  • 收稿日期:2016-03-04 修回日期:2016-07-11 出版日期:2016-11-12 网络出版日期:2016-08-11
  • 通讯作者: 马富裕, E-mail: mfy-agr@shzu.edu.cn; 樊华, E-mail: fanhua@shzu.edu.cn, Tel: 0993-6650999
  • 基金资助:

    本文由国家自然科学基金项目(31260299), 教育部科学技术研究重点项目(212201), 新疆生产建设兵团博士基金项目(2014BB012), 国际合作项目(2010DFA32520)和石河子大学杰出青年科技人才培育计划(2015ZRKXJQ03)资助。

Compensation Response of Drip-Irrigated Sugar Beets (Beta vulgaris L.) to Different Water Deficits during Storage Root Development

LI Yang-Yang,FEI Cong,CUI Jing,WANG Kai-Yong,MA Fu-Yu*,FAN Hua*   

  1. Agricultural College of Shihezi University / Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Shihezi 832000, China
  • Received:2016-03-04 Revised:2016-07-11 Published:2016-11-12 Published online:2016-08-11
  • Contact: Ma Fuyu, E-mail: mfy-agr@shzu.edu.cn; Fan Hua, E-mail: fanhua@shzu.edu.cn, Tel: 0993-6650999
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (31260299), the Key Project of Chinese Ministry of Education (212201), Doctoral Program of Higher Education of Xinjiang Production and Construction Corps (2014BB012), the International Cooperation Project (2010DFA32520), and Training Program of Distinguished Young Scientists of Shihezi University (2015ZRKXJQ03).

摘要:

为探讨滴灌甜菜块根膨大期干旱胁迫及复水的生长补偿效应,设置70% (T1)、50% (T2)和30% (T3)田间持水量, 调查块根膨大期对滴灌甜菜产量、农艺性状以及理化指标的影响。结果表明,当土壤为30%田间持水量时,甜菜产量比70%和50%持水量分别提高51.7%和17.6%,产糖量分别提高48.7%和7.7%。与70%持水量相比,50%和30%持水量条件下,块根膨大期甜菜电导率、脯氨酸以及过氧化物酶活性均在复水1 d时显著增加。主成分分析表明,细胞膜透性、抗氧化酶活性以及渗透调节物质以及农艺特性共同调控块根膨大期甜菜抵御干旱胁迫,其中块根可溶性糖含量不能作为甜菜抗旱性鉴定的指标。因此,滴灌甜菜块根膨大期,当土壤含水量下降至田间持水量的30%时及时补充灌溉,不但不影响甜菜生长,还有利于增加块根含糖量。

关键词: 补偿效应, 水分亏缺, 甜菜, 滴灌

Abstract:

The objective of this experiment was to investigate the compensation response of drip-irrigated sugar beets under drought stress and rewatering during storage root development. The experiment at treatments were field capacity of 70% (T1), 50% (T2), and 30% (T3). The yield, agronomic characteristics, and physical and chemical properties of the beet roots were measured. The sugar yield and technological sugar yield in T3 treatment were 51.7, 17.6% and 48.7%, 7.7% more than these in T1 and T2 treatments, respectively. At one day after rewatering, electrical conductivity, proline content, POD activity were significantly greater in T2 and T3 treatments than in T3 treatment during storage root development. Principal component analysis showed that a regulation system consisted of membrance permeability, antioxidant enzyme activity, osmotic adjustment and agronomic characteristics resisting drought stress, among which soluble sugar content can not be used as an indicator of drought resistance indentification of sugar beet during the devevelopment of sugar beet storage roots. Therefore, supplemental irrigation should be carried out promptly when the soil water content drops to 30% of field capacity during storage root development, which is beneficial to increase the sugar content and do not affect the growth of sugar beet.

Key words: Compensation effect, Water deficit, Sugar beet, drip irrigation

[1] 郝树荣, 郭相平, 王文娟. 不同时期水分胁迫对玉米生长的后效性影响. 农业工程学报, 2010, 26(7): 71–75 Hao S R, Guo X P, Wang W J. Aftereffects of water stress on corn growth at different stages. Trans CSAE, 2010, 26(7): 71–75 (in Chinese with English abstract) [2] Campos M K F, Carvalho K, Souza F S, Marur C J, Pereira L F P, Bespalhok F J C, Vieira L G E. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot, 2011, 72: 242–250 [3] Cho?uj D, Karwowska M, Ciszewska A, Jasińska M. In?uence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol Plant, 2008, 30: 679–687 [4] Sarvajeet Singh G, Narendra T. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909–930 [5] Rathinasabapathi B. Metabolic Engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot, 2000, 86: 709–716 [6] Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239–264 [7] Javadi T, Arzani K, Ebrahimzadeh H. Study of proline, soluble sugar, and chlorophyll a and b changes in nine Asian and one European pear cultivar under drought stress. Acta Hort, 2008: 241–246 [8] Marcińska I, Czyczy?o-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak M, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie S. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant, 2013, 35: 451–461 [9] 谢小玉, 马仲炼, 白鹏, 刘晓健. 辣椒开花结果期对干旱胁迫的形态与生理响应. 生态学报, 2014, 34: 3797–3805 Xie X Y, Ma Z L, Bai P, Liu X J. The morphological and physiological responses of hot pepper (Capsicum annuum L.) to drought stress with different intensity during blossom and fruit period. Acta Ecol Sin, 2014, 34: 3797–3805 (in Chinese with English abstract) [10] 周磊, 甘毅, 欧晓彬, 王根轩. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19: 217–225 Zhou L, Gan Y, Ou X B, Wang G X. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production. Chin J Eco-Agric, 2011, 19: 217–225 (in Chinese with English abstract) [11] 郭相平, 康绍忠. 玉米调亏灌溉的后效性. 农业工程学报, 2000, 16(4): 58–60 Guo X P, Kang S Z. After effect of regulated deficit irrigation (RDI) on maize. Trans CSAE, 2000, 16(4): 58–60 (in Chinese with English abstract) [12] 韩占江, 于振文, 王东, 王西芝, 许振柱. 调亏灌溉对冬小麦耗水特性和水分利用效率的影响. 应用生态学报, 2009, 20: 2671–2677 Han Z J, Yu Z W, Wang D, Wang X Z, Xu Z Z. Effects of regulated deficit irrigation on water consumption characteristics and water use efficiency of winter wheat. Chin J Appl Ecol, 2009, 20: 2671–2677 (in Chinese with English abstract) [13] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000 Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000 [14] 张志良, 瞿卫菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003 Zhang Z L, Qu W J. Experiment Guide of Plant Physiology. Beijing: Higher Education Press, 2003 [15] 王丁, 杨雪, 韩鸿鹏, 张丽琴, 薛建辉. 干旱胁迫及复水对刺槐苗水分运输过程的影响. 南京林业大学学报(自然科学版), 2015, 39(1): 67–72 Wang D, Yang X, Han H P, Zhang L Q, Xue J H. The impact of drought and rewatering on water transportation process of Robinia pseudoacacia L. seedlings. J Nanjing For Univ, 2015, 39(1): 67–72 (in Chinese with English abstract) [16] 陈晓远, 高志红, 罗远培. 植物根冠关系. 植物生理学通讯, 2005, 41: 555–562 Chen X Y, Gao Z H, Luo Y P. Relationship Between Root and Shoot of Plants. Plant Physiol Commun, 2005, 41: 555–562 (in Chinese with English abstract) [17] Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y. Water deficits uncouple growth from photosynthesis increase C content, and modify the relationship between C and growth in sink organs. J Exp Bot, 2011, 62: 1715–1729 [18] Barcia R A, Pena L B, Zawoznik M S, Benavides M P, Gallego S M. Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat. Plant Growth Regul, 2014, 74: 107–117 [19] Zhang L C, Zhao G Y, Xia C, Jia J Z, Liu X, Kong X Y. A wheat R2R3MYB gene, TaMYB30-B, improves drought stress tolerance intransgenic Arabidopsis. J Exp Bot, 2012, 63: 5873–5885 [20] 安玉艳, 梁宗锁, 郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应. 生态学报, 2011, 31: 716–725 An Y Y, Liang Z S, Hao W F. Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress. Acta Ecol Sin, 2011, 31: 716–725 (in Chinese with English abstract) [21] 薛延丰, 刘兆普. 钙离子对盐胁迫下菊芋幼苗生长、生理反应和光和能力的影响理论. 农业工程学报, 2006, 22(9): 44–47 Xue Y F, Liu Z P. Effects of calcium ion on growth, physiological responses and photosynthetic ability in salt-stressed Jerusalem artichoke (Helianthus tuberosus L.) seedlings. Trans CSAE, 2006, 22(9): 44–47 (in Chinese with English abstract) [22] 胡义, 胡庭兴, 陈洪, 王彬, 李晗. 干旱胁迫及复水对香樟幼树生理特性及生长的影响. 西北植物学报, 2015, 35: 294–301 Hu Y, Hu T X, Chen H, Wang B, Li H. Physiological properties and growth of Cinnamomum camphor saplings under drought stress and rewatering. Acta Bot Boreali-Occident Sin, 2015, 35: 294–301 (in Chinese with English abstract) [23] 邵艳军, 山仑, 李广敏. 干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究. 中国生态农业学报, 2006, 14(1): 68–70 Shao Y J, Shan L, Li G M. Comparison of osmotic regulation and antioxidation between sorghum and maize seedlings under soil drought stress and water recovering conditions. Chin J Eco-Agric, 2006, 14(1): 68–70 (in Chinese with English abstract) [24] 王利彬, 祖伟, 董守坤, 刘丽君, 徐亚会, 李雪凝. 干旱程度及时期对复水后大豆生长和代谢补偿效应的影响. 农业工程学报, 2015(11): 150–156 Wang L B, Zu W, Dong S K, Liu L J, Xu Y H, Li X N. Effects of drought stresses and times on compensation effect after re-watering in soybean. Trans CSAE, 2015(11): 150–156 (in Chinese with English abstract)

[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[3] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[4] 王艳丽,吴鹏年,李培富,王西娜,朱旭. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230-1237.
[5] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[6] 杨明达,关小康,刘影,崔静宇,丁超明,王静丽,韩静丽,王怀苹,康海平,王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响[J]. 作物学报, 2019, 45(3): 443-459.
[7] 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309.
[8] 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
[9] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[10] 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505.
[11] 武海霞,郭丽丽,郝立华,张浩,王清涛,程东娟,彭正萍,李菲,张茜茜,李树彬,徐明,郑云普. 水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响[J]. 作物学报, 2018, 44(10): 1570-1576.
[12] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[13] 米慧聪,谢双泽,李跃,丁寒,吕金印. 水分亏缺对小麦灌浆中后期穗部光合特性和14C-同化物转运的影响[J]. 作物学报, 2017, 43(01): 149-154.
[14] 牛玉萍,陈宗奎,杨林川,罗宏海*,张旺锋. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响[J]. 作物学报, 2016, 42(10): 1506-1515.
[15] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!