欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 149-154.doi: 10.3724/SP.J.1006.2017.00149

• 研究简报 • 上一篇    

水分亏缺对小麦灌浆中后期穗部光合特性和14C-同化物转运的影响

米慧聪1,谢双泽2,李跃1,丁寒2,吕金印1,*   

  1. 1西北农林科技大学生命科学学院,陕西杨凌 712100;2西北农林科技大学理学院,陕西杨凌 712100
  • 收稿日期:2016-04-08 修回日期:2016-09-18 出版日期:2017-01-12 网络出版日期:2016-09-20
  • 通讯作者: 吕金印,E-mail: jinyinlu@163.com, Tel: 13572196187
  • 基金资助:

    本研究由国家自然科学基金项目(31271624)资助。

Photosynthetic Characteristics and 14C-Assimilate Translocation in Wheat Spike during Mid- to Late-filling Stage under Water Deficit

MI Hui-Cong1,XIE Shuang-Ze2,LI Yue1,DING Han2,LYU Jin-Yin1,*   

  1. 1 College of Life Sciences, Northwest A&F University, Yangling 712100, China; 2 College of Science, Northwest A&F University, Yangling 712100, China
  • Received:2016-04-08 Revised:2016-09-18 Published:2017-01-12 Published online:2016-09-20
  • Contact: 吕金印,E-mail: jinyinlu@163.com, Tel: 13572196187
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271624).

摘要:

为探讨水分亏缺对小麦灌浆中后期穗部同化物转运的影响,利用14CO2同位素示踪技术,对于2个抗旱性不同小麦品种的盆栽试验,测定中度水分亏缺下小麦穗部光合特性及灌浆中后期碳同化物的转运。表明,花后20 d,中度水分亏缺下水地品种郑引1号旗叶和穗部净光合速率(Pn)分别下降50.2%19.9%,旱地品种普冰143分别下降33.7%12.8%,后者显著小于前者。14CO2示踪试验表明,花后15~20 d籽粒中14C-同化物快速积累,花后25 d达到最高值;灌浆中后期(花后15~20 d)穗部苞片中14C-同化物向外快速转运,灌浆末期(25 d)碳同化物已彻底转移。成熟期,中度水分亏缺下小麦籽粒中14C-同化物积累高于正常供水处理,且旱地品种普冰143积累量高于水地品种郑引1号。中度水分亏缺下,郑引1号产量下降36.7%,高于普冰14323.2%。适度水分亏缺对旱地品种穗部净光合影响较小,并促进了灌浆中后期穗部苞片中碳同化物的向外转运,可能是维持旱作小麦稳产的生理基础。

关键词: 小麦, 水分亏缺, 碳同化物转运, 14C-标记

Abstract:

The objective of this study was to understand the effect of water deficit onphotosynthetic and assimilate translocation in wheat spike during mid- to late-filling stage by using two pot-cultured14C-labelled varieties differing in drought tolerance. Under moderate water deficit, the net photosynthetic rate (Pn) of flag leaf and spike at 20 days after anthesis (DAA) decreased by 50.2% and 19.9% in Zhengyin 1 (drought sensitive) and by 33.7% and 12.8% in Pubing 143 (drought tolerance), respectively. Obviously, the decrease of photosynthetic capacity greater in the drought-sensitive variety than in the drought-resistant variety in response to water stress. The 14C-assimilates accumulated rapidly in grains during 15–20 DAA and reached the peak at 25 DAA. Simultaneously, the 14C-assimilates in glume, lemma, and awn had a quick outward transportation during 15–20 DAA, and completely transferred to grains at 25 DAA. Compared with normal water condition, moderate water deficit resulted in significantly higher 14C-assimilates in grains at maturity. The 14C-assimilate accumulation in Pubing 143 was significantly higher than that in Zhengyin 1, and the yield loss caused by drought stress was 23.2% in Pubing 143 and 36.7% in Zhengyin 1. Compared with drought-sensitive variety, drought-tolerant variety received less influence of moderate water deficit on spike Pn and stronger assimilate translocation from spike bracts to grain. This might be the physiological basis of stable yield in drought-resistant wheat variety.

Key words: Wheat, Water deficit, Assimilates translocation, 14C-labelling

[1]Kang G Z, Peng X Q, Wang L, Yang Y Y, Shao R X, Xie Y X, Ma D Y, Wang C Y, Guo T C, Zhu Y J. Ultrastructural observation of mesophyll cells and temporal expression profiles of the genes involved in transitory starch metabolism in flag leaves of wheat after anthesis. Physiol Plant, 2015, 153: 12–29
[2]Xue Q W, Zhu Z X, Musick J T, Stewart B A, Dusek D A. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J Plant Physiol, 2006, 163: 154–164
[3]Kohl S, Hollmann J, Erban A, Kopka J, Riewe D, Weschke W, Weber H. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. J Lipid Res, 2008, 49: 880–892
[4]张永平, 王志敏, 王璞, 赵明. 冬小麦节水高产栽培群体光合特征. 中国农业科学, 2003, 36: 1143–1149
Zhang Y P, Wang Z M, Wang P, Zhao M. Canopy photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Sci Agric Sin, 2003, 36: 1143–1149 (in Chinese with English abstract)
[5]Gebbing T, Schnyder H. 13C Labeling kinetics of sucrose in glumes indicates significant refixation of respiratory CO2 in the wheat ear. Funct Plant Biol, 2001, 28: 1047–1053
[6]王志敏, 张英华, 张永平,吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136–139
Wang Z M, Zhang Y H, Zhang Y P, Wu Y C. Review on photosynthetic performance of ear organs in Triticeae crops. J Triticeae Crops, 2004, 24(4): 136–139 (in Chinese with English abstract)
[7]张英华, 苏达, 张胜全, 周顺利, 王志敏, 张永平, 方保停. 不同水分条件下冬小麦旗叶和穗器官的PEPC活性及其与粒重和蛋白质含量的关系. 麦类作物学报, 2009, 29: 997–1003
Zhang Y H, Su D, Zhang S Q, Zhou S L, Wang Z M, Zhang Y P, Fang B T. Phosphoenolpyruvate carboxylase activity of flag leaf and ear organs and its relationship with grain mass and protein content in winter wheat under different water treatments. J Triticeae Crops, 2009, 29: 997–1003 (in Chinese with English abstract)
[8]李朝霞, 赵世杰, 孟庆伟, 邹琦, 田纪春. 不同粒叶比小麦品种非叶片光合器官光合特性的研究. 作物学报, 2004, 30: 419–426
Li Z X, Zhao S J, Meng Q W, Zou Q, Tian J C. Photosynthetic characteristics in non-leaf organs of winter wheat cultivars differing in grain-leaf ratio. Acta Agron Sin, 2004, 30: 419–426 (in Chinese with English abstract)
[9]Tambussi E A, Bort J, Guiamet J J. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci, 2007, 26: 1–16
[10]Sanchez-Bragado R, Elazab A, Zhou B W, Serret M D, Bort J, Nieto-Taladriz M T, Araus J L. Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon isotope signature: genotypic and growing conditions effects. J Integr Plant Biol, 2014, 56: 444–454
[11]王维, 张建华, 杨建昌,朱庆森. 适度土壤干旱对贪青小麦茎鞘贮藏性糖运转及籽粒充实的影响. 作物学报, 2004, 30: 1019–1025
Wang W, Zhang J H, Yang J C, Zhu Q S. Effects of controlled soil drought on remobilization of stem-stored carbohydrate and grain filling of wheat with unfavorably-delayed senescence. Acta Agron Sin, 2004, 30: 1019–1025 (in Chinese with English abstract)
[12]Araus J L, Brown H R, Febrero A, Bort J, Serret M D. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell & Environ, 1993, 16: 383–392
[13]Maydup M L, Antonietta M, Guiamet J J, Graciano C, López J.R, Tambussi E A. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Res, 2010, 119: 48–58
[14]Aranjuelo I, Cabrerabosquet L, Morcuende R, Avice J C, Nogués S, Araus J L, Martínez-Carrasco R, Pérez P. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J Exp Bot, 2011, 62: 3957–3969
[15]张磊, 吕金印, 贾少磊. 水分亏缺对小麦穗部光合特性及花前14C-同化物分配的影响. 作物学报, 2013, 39: 1514–1519
Zhang L, Lyu J Y, Jia S L. Photosynthetic characteristics of spike and distribution of 14C-assimilates accumulated before anthesis in wheat under water deficit condition. Acta Agron Sin, 2013, 39: 1514–1519 (in Chinese with English abstract)
[16]任妍婷, 吕金印, 成健. 水分亏缺对不同抗旱性小麦穗部光合及碳同化物转运的影响. 麦类作物学报, 2012, 32: 683–688
Ren Y T, Lyu J Y, Cheng J. Effects of water deficit on photosynthetic characteristics, accumulation and transportation of 14C-assimilates of ears in wheat. J Triticeae Crops, 2012, 32: 683–688 (in Chinese with English abstract)
[17]Jia S L, Lyu J L, Jiang S X, Liu C X, Jing Z H. Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit. Photosynthetica, 2015, 53: 95–109
[18]Teare I D, Peterson C J. Surface area of chlorophyll-containing tissue on the inflorescence of Triticum aestivum L. Crop Sci, 1971,11: 627–628
[19]裘昭峰, 翟立业. 小麦穗和芒表面积的估测. 作物学报, 1985, 11: 138, 144
Qiu S F, Zhai L Y. The estimation for surface area of spike and awn of the common wheat. Acta Agron Sin, 1985, 11: 138, 144 (in Chinese)
[20]Martinez D E, Luquez V M, Bartoli C G, Guiamét J J. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum). Physiol Plant, 2003, 119: 519–525
[21]魏爱丽, 王志敏, 陈斌, 翟志席, 张英华. 土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响. 作物学报, 2004, 30: 487–490
Wei A L, Wang Z M, Chen B, Zhai Z X, Zhang Y H. Effect of soil drought on electron transport rate and photophosphorylation level of different green organs in wheat. Acta Agron Sin, 2004, 30: 487–490 (in Chinese with English abstract)
[22]Gallagher J N, Biscoe P V, Hunter B. Effects of drought on grain growth. Nature, 1976, 264: 541–542
[23]Yang J C, Zhang J H, Huang Z L, Zhu Q S, Wang L. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci, 2000, 40: 1645–1655
[24]王维, 蔡一霞, 张建华,杨建昌, 朱庆森. 适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节. 作物学报, 2005, 31: 289–296
Wang W, Cai Y X, Zhang J H, Yang J C, Zhu Q S. Regulation of controlled soil drying on remobilization of stem-stored carbohydrate to grain in wheat grown under unfavorably-delayed senescence. Acta Agron Sin, 2005, 31: 289–296 (in Chinese with English abstract)
[25]Tambussi E, Nogues S J. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446–458
[26]Bidinger F, Musgrave R B, Fischer R A. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature, 1977, 270: 431–433
[27]Evans L T, Bingham J, Jackson P, Sutherland J. Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol, 1972, 70: 67–76
[28]Abebe T, Wise R P, Skadsen R W. Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the lemma and the palea primarily protect the seed. Plant Genome, 2009, 2: 247–259
[29]Ziegler-Jöns A. Gas exchange of ears of cereals in response to carbon dioxide and light: I. Relative contributions of parts of the ears of wheat, oat, and barley to the gas exchange of the whole organ. Planta, 1989, 178: 84–91
[30]Olugbemi L B. Distribution of carbon-14 assimilated by wheat awns. Ann Appl Biol, 1978, 90: 111–114

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!