欢迎访问作物学报,今天是 2025年1月8日 星期三

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1410-1414.doi: 10.3724/SP.J.1006.2017.01410

• 研究简报 • 上一篇    

玉米不同组织器官谷氨酰胺合成酶同工酶表达差异及聚合方式

王小纯1,2,3,张浩然3,韦一昊1,贾喜婷3,谷明鑫3,马新明1,*   

  1. 1河南农业大学河南粮食作物协同创新中心,河南郑州 450002;2河南农业大学省部共建小麦玉米作物学国家重点实验室,河南郑州 450002;3河南农业大学生命科学学院生物化学系,河南郑州 450002
  • 收稿日期:2016-12-21 修回日期:2017-04-20 出版日期:2017-09-12 网络出版日期:2017-05-08
  • 通讯作者: 马新明, E-mail: xinmingma@126.com, Tel:13937100780
  • 基金资助:

    本研究由国家重点研发计划项目(2016YFD0300205)和小麦玉米作物学国家重点实验室(39990047)资助。

Differential Expression and Assembly Mode of Glutamine Synthetase Isoen-zymes in Different Tissues and Organs of Maize

WANG Xiao-Chun1,2,3,ZHANG Hao-Ran3,WEI Yi-Hao1,JIA Xi-Ting3,GU Ming-Xin3,MA Xin-Ming1,*   

  1. 1 Collaborative Innovation Center of Henan Grain Crops / Henan AgriculturalUniversity, Zhengzhou 450002, China; 2 State Key Laboratory of Wheat and Maize Crop Science in China / Henan AgriculturalUniversity, Zhengzhou 450002, China; 3 Department of Biochemistry, College of Life Science / Henan AgriculturalUniversity, Zhengzhou 450002, China
  • Received:2016-12-21 Revised:2017-04-20 Published:2017-09-12 Published online:2017-05-08
  • Contact: Ma Xinming, E-mail: xinmingma@126.com, Tel:13937100780
  • Supported by:

    The study was supported by the National Key Research and Development Program of China (2016YFD0300205) and State Key Laboratory of Wheat and Maize Crop Science (39990047).

摘要:

谷氨酰胺合成酶(GS)是作物氮同化及转移利用的关键酶,本试验研究了玉米灌浆期不同组织器官的GS同工酶表达特性,鉴定了玉米GS同工酶的聚合方式。Westernblot结果表明,玉米不同组织器官的GS同工酶亚基表达存在明显差异,分子量约40kD的GS1亚基在所有组织中均大量表达,39kD的GS1亚基仅在穗位节及穗柄中大量表达,分子量约44kD的GS2亚基在叶片等光合组织中微量表达。通过改进BNE技术,结合胶内转移酶活性的测定,分析了玉米GS同工酶全酶的大小;利用2-D胶结合Westernblot鉴定了GS同工酶相应的亚基组成。结果表明,在玉米组织鉴定出3种分子量不同的GS同工酶,GS2全酶分子量约460kD,为十聚体;GS1全酶有2种聚合状态,一种是分子量约410kD的十聚体,另一种是分子量约240kD的五聚体形式,可见玉米GS同工酶表达存在多种方式。

关键词: Maize, Glutamine synthetase (GS), Expression, Blue native PAGE (BNE), Assembly

Abstract:

Glutamine synthetase (GS) is a key enzyme in nitrogen assimilation and recycling in cereals. In this study, the expression characteristics of GS isoenzymes in different tissues and organs of maize in grain-filling period were analyzed, and the assembly of GS isoenzymes were indentified. The GS isoforms expressed differentially in different organs were shown by Western-blot obviously; GS1 with a molecular weight of about 40 kD expressed highly in all tissues, and GS1 with a molecular weight of about 39 kD was merely expressed in the node of ear position and pedical, and GS2 with a molecular weight of about 44 kD was weakly expressed in the photosynthtic tissue such as leaf. With a modified blue naive PAGE (BNE) technique and in-gel activity analysis, the size of GS holoenzyme was calibrated; combined the 2-D gel with western-blot analysis, the subunits composition of GS isoenzymes were identified. Three GS isoenzymes with different sizes were identified in maize. GS2 holoenzyme was about 460 kD and likely a decamer, GS1 holoenzyme existed two kinds of assembly state, one was about 410 kD and likely a decamer, another was about 240 kD and more likely a pentamer; therefore, the expression of GS isoenzymes exists diversity in maize.

Key words: Maize, Glutamine synthetase (GS), Expression, Blue native PAGE (BNE), Assembly

[1] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009, 182:608–620
[2] McNally SF, Hirel B, Gadal P, Mann AF, Stewart GR. Glutamine synthetases of higher plants: evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol, 1983, 72: 22–25
[3] Hirel B, Gadal P. Glutamine synthetase isoforms in pea leaves: intracellular localization. Zeitschrift Fü Pflanzenphysiologie, 1981, 102: 315–319
[4] Hirel B, Lea P J. Ammonia Assimilation. Plant Nitrogen. Springer Berlin Heidelberg, 2001. pp 79–99
[5] Zozaya-Hinchliffe M, Potenza C, Ortega J L, Sengupta-Gopalan C. Nitrogen and metabolic regulation of the expression of plastidic glutamine synthetase in alfalfa (Medicago sativa). Plant Sci, 2005, 168: 1041–1052
[6] Cren M, Hirel B. Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol, 1999, 40: 1187–1193
[7] Robert F M, Wong P P. Isozymes of glutamine synthetase in Phaseolus vulgaris L. and Phaseolus lunatus L. root nodules. Plant Physiol, 1986, 81: 142–148
[8] Carvalho H, Pereira S, Sunkel C, Salema R. Detection of a cytosolic glutamine synthetase in leaves of Nicotiana tabacum L. by immunocytochemical methods. Plant Physiol, 1992, 100: 1591–1594
[9] Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in arabidopsis. J Biol Chem, 2004, 279: 16598–16605
[10]Llorca O, Betti M, González JM, Valencia A, Márquez AJ, Valpuesta JM. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Structural Biol, 2006, 156: 469–479
[11] Seabra AR, Vieira CP, Cullimore JV, Carvalho HG.Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds. BMC Plant Biol, 2010, 10: 183
[12] Singh K K, Ghosh S. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions. Plant Cell Rep, 2013, 32: 183–193
[13] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18: 3252–3274
[14] McParland RH, Guevara JG, Becker RR, Evans HJ. The purification and properties of the glutamine synthetase from the cytosol of soya-bean root nodules. Biochem J, 1976, 153: 597–606
[15] Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. J Biol Chem, 2006, 281: 29287–29296
[16] Seabra A R, Carvalho H, Pereira P J. Crystallization and preliminary crystallographic characterization of glutamine synthetase from Medicago truncatula. Acta Crystallographica, 2009, 65: 1309–1312
[17] Torreira E, Seabra AR, Marriott H, Zhou M, Llorca Ó, Robinson CV, Carvalho HG, Fernández-Tornero C, Pereira PJ. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture. Acta Crystallographica, 2014, 70: 981–993
[18] Wittig I, Braun H P, Schägger H. Blue native PAGE. Nat Protocols, 2006, 1: 418–428
[19] Wittig I, Karas M, Schägger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Molecular & Cellular Proteomics, 2007, 6: 1215–1225
[20] Kimata-Ariga Y, Hase T. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function. PLoS One, 2014, 9(10): e108965
[21] Seabra A R, Silva L S, Carvalho H G. Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol, 2013, 13: 137–142
[22] Wang X C, Wei Y H, Shi L X, Ma X M, Theg SM. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). J Exp Bot, 2015, 66: 6827–6834
[23] Mann A F, Fentem P A, Stewart G R. Identification of two forms of glutamine synthetase in barley (Hordeum vulgare). Biochem Biophys Res Commun, 1979, 88: 515–521
[24] 郭玉朋. 植物光呼吸途径研究进展. 草业学报, 2014, 23: 322–329
Guo Y P.A study on advances in plant photorespiration. Acta Pratac Sin, 2014, 23: 322–329 (in Chinese with English abstract)
[25] Bernard SM, Møller AL, Dionisio G, Kichey T, Jahn TP, Dubois F, Baudo M, Lopes MS, Tercé-Laforgue T, Foyer CH, Parry MA, Forde BG, Araus JL, Hirel B, Schjoerring JK, Habash DZ. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67: 89–105
[26] Hirel B, Andrieu B, Valadier M H,Renarda S, Quilleré I,Chelleb M, Pommel B, Fournier C, Drouetb J L. Physiology of maize: II.identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiol Plant, 2005, 124: 178–188

[1] 景立权,赵福成,王德成,袁建华,陆大雷,陆卫平. 不同施氮水平对超高产夏玉米氮磷钾积累与分配的影响[J]. 作物学报, 2013, 39(08): 1478-1490.
Viewed
Full text
460
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 460

  From Others local
  Times 31 429
  Rate 7% 93%

Abstract
295
Just accepted Online first Issue
0 0 295
  From Others local
  Times 73 222
  Rate 25% 75%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!