作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1401-1409.doi: 10.3724/SP.J.1006.2017.01401
肖飞1,杨延龙2,王娅婷2,马慧2,张旺锋2,*
XIAO Fei1,YANG Yan-Long2,WANG Ya-Ting2,MA Hui2,ZHANG Wang-Feng2,*
摘要:
选用陆地棉(Gossypium hirsutum L.)品种新陆早45,在室外盆栽至开花结铃期后,移至人工气候室,模拟新疆棉花花铃期易出现的低温逆境条件,设置处理T (16°C/10°C,昼/夜),以常温(30°C/18°C,昼/夜)处理作为对照,采用叶绿素荧光和P700同步测定技术,研究低温对棉花花铃期叶片光合机构PSII能量分配、PSI氧化还原状态及环式电子传递流的影响。结果表明,与对照相比,低温处理显著降低了棉花叶片PSII光适应状态下最大光化学量子产量(Fv¢/Fm¢)、光化学猝灭系数(qP)和PSII有效光化学量子产量[Y(II)],并使PSII非调节性能量耗散[Y(NO)]和调节性能量耗散[Y(NPQ)]量子产量显著升高,诱导PSII发生光抑制。低温引起棉花叶片光合机构PSI受体侧限制[Y(NA)]显著下降和供体侧限制[Y(ND)]显著升高,但未引起有效的PSI复合体含量(Pm)显著降低,表明与PSII相比,棉花叶片PSI对低温不敏感。此外,低温引起环式电子传递量子产量[Y(CEF)]以及与PSII实际量子产量比率的[Y(CEF)/Y(II)]显著升高,进一步表明在低温下,光破坏防御机制中环式电子传递流对棉花PSI、PSII起着重要的保护作用,是主要的光破坏防御机制。非光化学热耗散(NPQ)和调节性非光化学热耗散[Y(NPQ)]与[Y(CEF)]具有显著的正相关关系,表明低温引起棉花花铃期叶片PSII反应中心过度关闭产生过剩的激发能,造成了PSII可逆的光抑制,环式电子传递流的响应及较高的调节性能量耗散共同保护了棉花叶片PSI和PSII免受光抑制的损伤,这可能是棉花叶片PSI对低温不敏感的重要原因。
[1]李新国, 段伟, 孟庆伟, 邹琦. PSI的低温光抑制. 植物生理学通讯, 2002, 38: 375–381 Li X G, Duan W, Meng Q W, Zou Q. PSI photoinhibition under low temperature. Plant Physiol Commun, 2002, 38: 375–381 (in Chinese with English abstract) [2]张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟. 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 2009, 42: 4288–4293 Zhang Z S, Zhang L T, Gao H Y, Jia Y J, Bu J W, Meng Q W. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin, 2009, 42: 4288–4293 (in Chinese with English abstract) [3]Prasil O, Adir N, Ohad I. Dynamics of photosystem II, mechanism of photoinhibition and recovery process. Top Photosynth, 1992, 11: 295–348 [4]Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. BBA-Bioenergetics, 1993, 1143: 113–134 [5]Havaux M, Davaud A. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity. Photosynth Res, 1994, 40: 75–92 [6]Sonoike K, Terashima I. Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta, 1994, 194: 287–293 [7]孙山, 张立涛, 王家喜, 王少敏, 高华君, 高辉远. 低温弱光胁迫对日光温室栽培杏树光系统功能的影响. 应用生态学报, 2008, 19: 512–516 Sun S, Zhang L T, Wang J X, Wang S M, Gao H J, Gao H Y. Effects of low temperature and weak light on the functions of photosystem in Prunusarme. Chin J Appl Ecol, 2008, 19: 512–516 (in Chinese with English abstract) [8]Sonoike K. Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996, 37: 239–247 [9]Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta: Bioenergetics, 2007, 1767: 414–421 [10]Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci, 2008, 13: 178–182 [11]Sonoike K. Photoinhibition of photosystem I. Physiol Plant, 2011, 142: 56–64 [12]Zhang Z S, Jia Y, Gao H Y, Zhang L, Li H, Meng Q W. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 2011, 234: 883–889 [13]Golbeck J H. Structure, function and organization of the photosystem I reaction center complex. Biochim Biophys Acta: Rev Bioenergetics, 1987, 895: 167–204 [14]Mi H, Klughammer C, Schreiber U. Light-induced dynamic changes of NADPH fluorescence in synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell Physiol, 2000, 41: 1129–1135 [15]Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. J Photoch Photobio B, 1999, 48: 136–141 [16]Zhang S, Scheller H V. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 1595–1602 [17]Kim S J, Lee C H, Hope A B, Chow W S. Inhibition of photosystems I and II and enhanced back flow of photosystem I electrons in cucumber leaf discs chilled in the light. Plant Cell Physiol, 2001, 42: 842–848 [18]Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 2002, 110: 361–371 [19]Takahashi S, Milward S E, Fan D Y, Chow W S, Badger M R. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol, 2009, 149: 1560–1567 [20]Nuijs A M, Shuvalov V A, Van Gorkom H J, Plijter J J, Duysens L N. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles. Biochim Biophys Acta: Bioenergetics, 1986, 850: 310–318 [21]Shikanai T. Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol, 2007, 58: 199–217 [22]Satoh K. Mechanism of photoinactivation in photosynthetic systems I: the dark reaction in photoinactivation. Plant Cell Physiol, 1970, 11: 15–27 [23]Sonoike K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol, 1995, 36: 825–830 [24]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215: 541–548 [25]Niyogi K K. Safety valves for photosynthesis. Curr Opin Plant Biol, 2000, 3: 455–460 [26]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol, 1999, 50: 601–639 [27]Miyake C, Shinzaki Y, Miyata M, Tomizawa K I. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of Chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol, 2004, 45, 1426–1433 [28]黄伟, 张石宝, 曹坤芳. 高等植物环式电子传递的生理作用. 植物科学学报, 2012, 30: 100–106 Huang W, Zhang S B, Cao K F. Physiological role of cyclic electron flow in higher plants. Plant Sci J, 2012, 30: 100–106 (in Chinese with English abstract) [29]Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016, 67: 81–106 [30]邹陈, 陈冬花, 吉春容, 杨举芳, 尹育红, 李新建. 障碍型冷害对石河子棉区花铃期棉花生长的影响研究. 中国农学通报, 2012, 12: 54–59 Zou C, Chen D H, Ji C R, Yang J F, Yin Y H, Li X J. Experiments and studies about effect of obstacle cold disaster on cotton during the flowering and boll stages in the cotton region of Shihezi. Chin Agric Bull, 2012, 12: 54–59 (in Chinese with English abstract) [31]刘鹏, 孟庆伟, 赵世杰. 冷敏感植物的低温光抑制及其生化保护机制. 植物生理学通讯, 2001, 37: 76–82 Liu P, Meng Q W, Zhao S J. Chilling–induced photoinhibition and biochemical protective mechanism of chilling-sensitive plants. Plant Physiol Commun, 2001, 37: 76–82 (in Chinese with English abstract) [32]张旺锋, 王振林, 余松烈, 李少昆, 曹连莆, 王登伟. 氮肥对新疆高产棉花群体光合性能和产量形成的影响. 作物学报, 2002, 28, 789–796 Zhang W F, Wang Z L, Yu S L, Li S K, Cao L P, Wang D W. Effect of under–mulch–drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high yield cotton of Xinjiang. Acta Agron Sin, 2002, 28: 789–796 (in Chinese with English abstract) [33]武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应. 植物生态学报, 2014, 38: 1124–1134 Wu H, Dai H F, Zhang J S, Jiao X L, Liu C, Shi J Y, Fan Z C. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves. Chin J Plant Ecol, 2014, 38: 1124–1134 (in Chinese with English abstract) [34]Liu Y F, Qi M F, Li T L. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci, 2012, 196: 8–17 [35]Kramer D M, Johnson G, KIIrats O, Edwards G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res, 2004, 79: 209–218 [36]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta: Gen Subjects, 1989, 990: 87–92 [37]Huang W, Yang S J, Zhang S B, Zhang J L, Cao K F. Cyclic electron Flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 2012, 235: 819–828 [38]Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K I. Effects of light intensity on cyclic electron Flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol, 2005, 46: 1819–1830 [39]Fan D Y, Hope A B, Jia H, Chow W S. Separation of light-induced linear, cyclic and stroma-sourced electron fluxes to P700+ in cucumber leaf discs after pre-illumination at a chilling temperature. Plant Cell Physiol, 2008, 49: 901–911 [40]Huang W, Zhang S B, Cao K F. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol, 2011, 52: 297–305 [41]Clarke J E, Johnson G N. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta, 2001, 212: 808–816 [42]Hendrickson L, Ball M C, Osmond C B, Furbank R T, Chow W S. Assessment of photoprotection mechanisms of grapevines at low temperature. Funct Plant Biol, 2003, 30: 631–642 [43]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215: 541–548 [44]Wise R R. Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res, 1995, 45: 79–97 [45]Kudoh H, Sonoike K. Dark-chilling pretreatment protects PSI from light-chilling damage. J Photosci, 2002, 9: 59–62 [46]Sonoike K. Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystemI: possible involvement of active oxygen species. Plant Sci, 1996, 115: 157–164 [47]Kim S J, Lee C H, Hope A B, Chow W S. Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after short-term chilling in the light in four plant species with different chilling sensitivities. Physiol Plant, 2005, 123: 100–107 [48]Li J W, Zhang S B. Differences in the responses of photosystems I and II in Cymbidium sinense and C. tracyanum to long-term chilling stress. Front Plant Sci, 2015, 6: 1–10 [49]Kintake S. Photoinhibition and Protection of Photosystem I: Photosystem I. Springer Netherlands, 2007. pp 657–668 [50]张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟. 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 2009, 42: 4288–4293 Zhang Z S, Zhang L T, Gao H Y, Jia Y J, Bu J W, Meng Q W. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin, 2009, 42: 4288–4293 (in Chinese with English abstract) [51]Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016, 67: 81–106 [52]Barth C, Krause H G. Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta, 2002, 216: 273–279 [53]Zivcak M, Kalaji H M, Shao H B, Olsovska K, Brestic M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photoch Photobiol B, 2014, 137: 107–115 |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[5] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[6] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[7] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[8] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[9] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[10] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[11] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[12] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[13] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[14] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[15] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
|