欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1791-1801.doi: 10.3724/SP.J.1006.2017.01791

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关

黄启秀,曲延英,姚正培,李梦雨,陈全家*   

  1. 新疆农业大学农学院 / 新疆农业大学农业技术重点实验室, 新疆乌鲁木齐 830052
  • 收稿日期:2017-03-09 修回日期:2017-07-23 出版日期:2017-12-12 网络出版日期:2017-08-10
  • 通讯作者: 陈全家, E-mail: chqjia@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31560409)资助。

Correlation between Resistance to Fusarium Wilt and Expression of Flavonoid Metabolism Related Genes in Gossypium barbadense L.

HUANG Qi-Xiu,QU Yan-Ying,YAO Zheng-Pei,LI Meng-Yu,CHEN Quan-Jia*   

  1. College of Agronomy, Xinjiang Agriculture University / Key Laboratory of Agriculture Biological Technology, Xinjiang Agricultural University, Urumqi 830052
  • Received:2017-03-09 Revised:2017-07-23 Published:2017-12-12 Published online:2017-08-10
  • Contact: 陈全家, E-mail: chqjia@126.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31560409).

摘要:

枯萎病是危害海岛棉生产的重要因素之一, 研究枯萎病抗性分子机制将为培育抗病海岛棉品种、解决枯萎病对海岛棉的危害问题提供坚实的基础。本研究在前期转录组测序的基础上, 对海岛棉枯萎病抗性差异表达基因进行分析(DEG, Differentially Expressed Gene); 以7个抗病性表现不同的海岛棉品种为材料, 利用qRT-PCR的方法研究抗病差异表达基因在不同接菌时间点的表达量差异, 并分析基因表达量与病情指数的相关性。结果表明, DEG分析得出类黄酮代谢通路相关基因与海岛棉枯萎病抗性有关。qRT-PCR分析显示抗病材料中类黄酮代谢通路关键基因的表达量显著高于感病材料。在接菌后多个时间点, 类黄酮代谢通路中的关键基因TT7CHIDFR在抗病材料中的表达量显著或极显著高于感病材料, 其中CHIDFR基因的表达量与病情指数呈显著负相关。综上所述, 类黄酮代谢通路相关基因对海岛棉枯萎病抗性均有影响, 且CHITT7DFR基因是关键基因。

关键词: 海岛棉, 枯萎病, 类黄酮, 表达分析, 转录组测序

Abstract:

Fusarium wilt is one of the important factors that threaten the production of Gossypium barbadense. L. To expanding the molecular mechanism of resistance to Fusarium wilt will provide a solid foundation for cultivating resistant island cotton varieties and solve the problem of wilt disease. In this study DEG(Differentially Expressed Gene) was analyzed on the basis of sequencing of transgenic plants. The Disease resistance differentially expressed genes were analyzed at different inoculation time points of seven Gossypium barbadense. L varieties with different disease resistance levels, and the correlation between gene expression and disease index was analyzed. Flavonoid biosynthetic pathway genes were related to fusarium wilt resistance. qRT-PCR analysis showed that the expression of flavonoid metabolic pathway genes in resistant materials was significantly higher than that in susceptible materials. The expression levels of TT7, CHI and DFR, the key genes in flavonoid metabolic pathways, were significantly higher in resistant materials than in susceptible materials at multiple time points after inoculation, And the expression of CHI and DFR genes was negatively correlated with disease index. In summary, the flavonoid metabolic pathway-related genes have an effect on the resistance to fusarium wilt, among which CHI, TT7 and DFR genes are the key genes.

Key words: Gossypium barbadense, Fusarium wilt, Flavonoids, Expression analysis, RNA-seq

[1]孔庆平. 我国海岛棉生产概况及比较优势分析. 中国棉花, 2002, 12: 19–23
Kong Q P. Production situation and comparative advantage analysis of Gossypium barbadense in China. China Cotton, 2002, 12: 19–23 (in Chinese with English abstract)
[2]徐秋华, 张献龙, 聂以春, 冯纯大. 我国棉花抗枯萎病品种的遗传多样性分析. 中国农业科学, 2002, 35: 272–276
Xu Q H, Zhang X L, Nie Y C, Feng C D. Genetic diversity evaluation of cultivars (G. hirsumtum L.) resistant to fusarium wilt by RAPD markers. Sci Agric Sin, 2002, 35: 272–276 (in Chinese with English abstract)
[3]彭姜龙, 曲延英, 王莉萍, 王聪, 郝维维, 汪铖亮. 不同温度条件下接种棉花枯萎病菌海岛棉和陆地棉抗病性研究. 新疆农业科学, 2013, 50: 89–93
Peng J L, Qu Y Y, Wang L P, Wang C, Hao W W, Wang C L. A study on properties of resistance to Fusarium wilt in leaves of sea island cotton (Gossipium barbadense) and upland cotton (Gossipium hirsutum L.) under different temperature conditions. Xinjiang Agric Sci, 2013, 50: 89–93 (in Chinese with English abstract)
[4]校百才. 陆地棉抗枯、黄萎病性状配合力、遗传力的初步研究. 作物学报, 1985, 11: 267–273
Xiao B C. Preliminary study on cotton Fusarium and Verticillium wilt resistance traits, combining ability and heritability. Acta Agron Sin, 1985, 11: 267–273 (in Chinese with English abstract)
[5]Smith A L, Dick J B. Inheritance of resistance to Fusarium wilt in upland and sea island cottons as complicated by nematodes under field conditions. Phytopathology, 1960, 50: 44–48
[6]Yang J, Ma Q, Zhang Y, Wang X F, Zhang G Y, Ma Z Y. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt. Gene, 2016, 575: 687–694
[7]Gao X Q, Wheeler T, Li Z H, Charles M K, He P, Shan L B. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2 011, 66: 293–375
[8]Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57–63
[9]Xu L, Zhu L F, Tu L L, Liu L L, Yuan D J, Jin L, Long L, Zhang X L. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62: 5607–5621
[10]王春晖. 陆地棉抗病自交系在黄萎病菌诱导下的转录组测序研究. 中国农业科学院硕士学位论文, 北京, 2013
Wang C H. Study on Transcriptome Sequencing of Cotton (Gossypium hirsutum L.) Resistant Inbred Line Induced by Verticillium. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract)
[11]Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot, 2011, 62: 2465–2483
[12]Malhotra B, Onyilagha J C, Bohm B A, Towers G H N, James D, Harborne J B, French C J. Inhibition of tomato ringspot virus by flavonoids. Phytochemistry, 1996, 43: 1271–1276
[13]贾振华. 植物黄酮类化合物槲皮素与转录因子AtMYB44诱导和调控植物防卫反应的研究. 南京农业大学博士学位论文, 江苏南京, 2010
Jia Z H. Study on the Effects of Quercetin and Transcription Factor Atmyb44 on Plant Defense Response. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2010 (in Chinese with English abstract)
[14]Anna K P, Edward F. S, Jaroslav P. Effect of flavonoids on mycelial growth of Verticillium albo-atrum. Biochem Syst & Ecol, 1995, 23: 683–693
[15]左涛, 赵树堂, 卢孟柱, 孙爱东, 王延伟, 贺伟. 杨树二氢黄酮醇-4-还原酶基因(DFR)的克隆及反义表达对儿茶素合成的影响. 东北林业大学学报, 2016, 10: 49–55
Zuo T, Zhao S T, Lu M Z, Sun A D, Wang Y W, He W. Cloning dihydroflavonol-4-reductase gene (DFR) of poplar and its antisense expression effects on catechin synthesis. J Northeast For Univ, 2016, 10: 49–55 (in Chinese with English abstract)
[16]马银平, 王付欣, 杨淳淋, 沈法富, 夏桂先. 海岛棉几丁质酶基因GbCHI的克隆与功能分析. 遗传, 2012, 34: 240–247
Ma Y P, Wang F X, Yang C L, Shen F F, Xia G X. Cloning and functional analysis of chitinase gene GbCHI from sea-island cotton (Gossypium barbadense). Hereditas (Beijing), 2012, 34: 240–247 (in Chinese with English abstract)
[17]Leslie A W, Li G Q, Doreen W, Imre E S, Keith R D. The phenylalanine ammonialyase gene family in Arabidopsis thaliana. Plant Mol Biol, 1995, 27: 327–338
[18]Wajad N, Abdul L T, Saghir A, Khalid M, Abid M, Zhou B L. Evaluation of Cotton Leaf Curl Virus Resistance in BC1, BC2, and BC3 Progenies from an Interspecific Cross between Gossypium arboreum and Gossypium hirsutum. PLoS One, 2014, 9: e111861
[19]Emilie F F, Bart P H J T. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol, 2006, 7: 71–86
[20]Zhang S, Klessig D F. MAPK cascades in plant defense signaling. Trends Plant Sci, 2001, 6: 520–527
[21]Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol, 2002, 5: 325–331
[22]Patil M A, Pierce M L, Phillips A L, Venters B J, Essenberg M. Identification of genes up-regulated in bacterial-blight-resistant upland cotton in response to inoculation with Xanthomonas campestris pv. malvacearum. Physiol Mol Plant Pathol, 2005, 67: 319–335
[23]Atsushi N, Chikara M, Mineo S, Hideyuki M, Atsushi K, Hong J S, Keisuke K, Jun A, Akira K. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J, 2007, 5: 778–790
[24]Boots A W, Haenen G R M M, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol, 2008, 585: 325–337
[25]包改红, 毕阳, 李永才, 王毅, 王婷, 唐瑛, 马朝玲, 白小东. 硫色镰刀菌接种对抗病/易感品种马铃薯块茎苯丙烷代谢的影响比较. 食品科学, 2015, 36: 251–256
Bao G H, Bi Y, Li Y C, Wang Y, Wang T, Tang Y, Ma Z L, Bai X D. Comparison of phenylpropanoid pathway metabolism in slices of susceptible and resistant potato cultivars inoculated with Fusarium sulphureum. Food Sci, 2015, 36: 251–256 (in Chinese with English abstract)
[26]Guo S, Zuo Y, Zhang Y, Wu C, Su W, Jin W, Yu H, An Y, Li Q. Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. BMC Genomics, 2017, 18: 42
[27]Tan B A, Daim L D J, Ithnin N, Ooi T E K, Md-Noh N, Mohamed M, Mohd-Yusof H, Appleton D R, Kulaveerasingam H. Expression of phenylpropanoid and Flavonoid Pathway genes in oil palm roots during infection by Ganoderma boninense. Plant Gene, 2016, 7: 11–20
[28]Sun W G, Xu Y. Study on the composition of the pigments in the nature colored cotton. J Xi’an Polytechnic Univ, 2009, 23:119–124
[29]Sun Q, Jiang H Z, Zhu X Y, Wang W N, He X H, Shi Y Z,Yuan Y L, Du X M, Cai Y F. Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. BMC Genomics, 2013, 14: 852
[30]Federico P, Marta N, María A B, Fuencisla M, Barceló A R. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phyt, 2004, 163: 111–123
[31]Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martínez D I O. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. J Med Hum, 2010, 10: 1–19
[32]Irina O V, Robert T R, Jane E G. David J R, Kent A M, Nicholi V. Characterization of flavonols in Vaccinium macrocarpon powder. J Agric Food Chem, 2003, 52: 188–195
[33]Li F, Jin Z, Qu W, Zhao D, Ma F. Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol Biochem, 2006, 44: 455–461
[34]Fawe A, Abou Z M, Menzies J G, Belanger R R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology, 1998, 88: 396–401
[35]马春雷, 乔小燕, 陈亮. 茶树无色花色素还原酶基因克隆及表达分析. 茶叶科学, 2010, 30: 27–36
Ma C L, Qiao X Y, Chen L. Cloning and expression analysis of Leucoanthocyantin reducase gene of tea plant (Camellia sinensis). J Tea Sci, 2010, 30: 27–36 (in Chinese with English abstract)
[36]宋凤鸣, 郑重, 童贤明, 葛秀春. 儿茶素对棉枯萎病菌胞壁降解酶的抑制及在棉花抗病性中的作用. 真菌学报, 1996, 4: 297–303
Song F M, Zheng Z, Tong X M, Ge X C. Inhibition of tea catechins on cell wall degrading enzymes of cotton Fusarium Wilt and its role in disease resistance of cotton. Mycosystema, 1996, 4: 297–303 (in Chinese with English abstract)
[37]Shih, C H C I K, Yip, W K L, Clive. Differential expression of two flavonoid 3’-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3’-deoxyanthocyanidin phytoalexins in sorghum. Plant Cell Physiol, 2006, 47: 1412–1419
[38]张松焕, 李春奇, 郭惠明, 裴熙祥, 程红梅. 过量表达紫茎泽兰类黄酮3’-羟化酶基因对转基因烟草POD、PAL活性的影响. 中国农业科技导报, 2009, 11: 98–101
Zhang S H, Li C Q,Guo H M, Pei X X, Cheng H M. Effects of eupatorium adenophorum flavonoid 3'-hydroxylase overexpression on pod and pal activity in transgenic tobacco. J Agric Sci Technol, 2009, 11: 98–101 (in Chinese with English abstract)
[39]Deshika K, Gopal J, Amit A D, Ankur R. B, Manu A, Surekha K A, Ramamurthy S, Pradeep K J. Identification and characterization of wilt and salt stress-responsive MicroRNAs in Chickpea through high-throughput sequencing. J B Inst Technol, 2014, 9: e108851

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[3] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[6] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[7] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[8] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[9] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[10] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[11] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[12] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[13] 邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展[J]. 作物学报, 2021, 47(12): 2299-2313.
[14] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[15] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!