欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 260-267.doi: 10.3724/SP.J.1006.2018.00260

• • 上一篇    下一篇

黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系

苗永杰1, 阎俊2, 赵德辉1, 田宇兵1, 闫俊良2, 夏先春1, 张勇1,*(), 何中虎1,3   

  1. 1中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京 100081
    2中国农业科学院棉花研究所, 河南安阳 455000
    3国际玉米小麦改良中心(CIMMYT)中国办事处, 北京 100081
  • 收稿日期:2017-06-20 接受日期:2017-11-21 出版日期:2018-02-12 网络出版日期:2017-12-11
  • 通讯作者: 张勇
  • 作者简介:

    yjmiao@genetics.ac.cn

  • 基金资助:
    本研究由国家重点基础研究发展计划(973计划)项目(2014CB138105), 中国农业科学院作物科学研究所中央级公益性科研院所基本科研业务费专项(1610092016101), 国家重点研发计划专项(2016YFE0108600)和中国农业科学院创新工程项目资助

Relationship between Grain Filling Parameters and Grain Weight in Leading Wheat Cultivars in the Yellow and Huai Rivers Valley

Yong-Jie MIAO1, Jun YAN2, De-Hui ZHAO1, Yu-Bing TIAN1, Jun-Liang YAN1, Xian-Chun XIA1, Yong ZHANG1,*(), Zhong-Hu HE1,3   

  1. 1 Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
    2 Institute of Cotton Research, CAAS, Anyang 455000, Henan, China
    3 CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2017-06-20 Accepted:2017-11-21 Published:2018-02-12 Published online:2017-12-11
  • Contact: Yong ZHANG
  • Supported by:
    This study was supported by the National Basic Research Program of China (2014CB138105), Core Research Budget of the Non-profit Governmental Research Institutions of the Institute of Crop Science of CAAS (1610092016101), National Key Research and Development Program of China (2016YFE0108600), and Agricultural Science and Technology Innovation Program of CAAS.

摘要:

研究粒重与籽粒灌浆特性的关系对提高小麦产量潜力和稳定性具有重要意义。采用Logistic方程, 对2012—2015连续3年度种植在河南安阳的14份黄淮麦区主栽品种和苗头品系的粒重及其籽粒灌浆特性研究表明, 粒重和灌浆速率参数主要受基因型控制, 灌浆持续时间主要受环境影响。不同粒重类型品种间平均灌浆速率、最大灌浆速率和各时期灌浆速率均存在显著差异, 表现为高粒重>中等粒重>低粒重, 灌浆持续时间则差异不显著。灌浆速率, 特别是快增期灌浆速率快慢是造成品种间粒重差异的主要原因。粒重与所有灌浆速率参数均呈显著正相关(P<0.001), 与快增期灌浆速率和平均灌浆速率的相关系数分别为0.97和0.90, 与灌浆持续时间相关不显著。建议采用平均灌浆速率对相关性状进行基因定位, 以进一步改良黄淮麦区小麦品种的粒重。

关键词: 普通小麦, 粒重, 品种粒重类型, 平均灌浆速率

Abstract:

The knowledge on relationship between grain weight and grain-filling parameters is important for yield potential and stability improvement of common wheat. Logistic equation was used for fitting the grain-filling dataset from 14 leading cultivars and advanced lines, sown at Anyang, Henan province in three successive seasons from 2012 to 2015. The results showed that grain weight and all grain-filling rate (GFR) related parameters were mainly influenced by genotype, while grain-filling period related parameters were mainly influenced by environment. There was significant difference on all GFR parameters including the average and the highest GFR, and those in the three periods among cultivar groups based on grain weight, showing a trend of high-grain-weight cultivar > medium-grain-weight cultivar > low-grain-weight cultivar, whereas there was no significant difference for grain-filling period related parameters among the cultivar groups. GFR, especially in the fast increase period, was the major factor that made the significant difference of grain weight among cultivars. Positive correlations between grain weight and all GFR related parameters were observed (P < 0.001), with the coefficients of 0.97 for GFR in the fast increase period and 0.90 for average GFR, whereas no significant correlations were found between grain weight and grain-filling period related parameters. Therefore, average GFR was proposed to be used in quantitative trait loci mapping to improve grain weight of wheat in the Yellow and Huai Rivers Valley.

Key words: common wheat, grain weight, cultivar group based on grain weight, average grain-filling rate

表1

14份参试品种名称、系谱及其审定年份"

编号
Code
品种
Cultivar
系谱
Pedigree
审定年份
Year released
1 周麦16 Zhoumai 16 豫麦21/周8425B Yumai 21/Zhou 8425B 2002
2 周麦18 Zhoumai 18 内乡185/豫麦21 Neixiang 185/Yumai 21 2004
3 良星99 Liangxing 99 稳千1号/鲁麦14//PH 85-16 Wenqian 1/Lumai 14//PH 85-16 2004
4 矮抗58 Aikang 58 周麦11//豫麦49/郑州8960 Zhoumai 11//Yumai 49/Zhengzhou 8960 2005
5 郑麦366 Zhengmai 366 豫麦2/百泉 3199 Yumai 2/Baiquan 3199 2005
6 济麦22 Jimai 22 935024/935106 2006
7 良星66 Liangxing 66 济91102/济麦19 Ji 91102/Jimai 19 2008
8 周麦27 Zhoumai 27 周麦16/矮抗58 Zhoumai 16/Aikang 58 2011
9 丰德存麦1号 Fengdecunmai 1 周9811/矮抗58 Zhou 9811/Aikang 58 2011
10 中麦895 Zhongmai 895 周麦16/荔垦4号 Zhoumai 16/Liken 4 2012
11 中麦875 Zhongmai 875 周麦16/荔垦4号 Zhoumai 16/Liken 4 2014
12 中麦871 Zhongmai 871 周麦16/荔垦4号 Zhoumai 16/Liken 4 /
13 中麦140 Zhongmai 140 良星99/矮抗58 Liangxing 99/Aikang 58 /
14 荔垦4号 Liken 4 未知 Unknown /

表2

14份参试品种千粒重和籽粒灌浆特征参数均值及其变异范围"

灌浆参数
Grain-filling parameter
均值
Mean
总变异区间
Range of total variation
品种间变异区间
Range of cultivar variation
年份间变异
Range of year variation
千粒重 TGW (g) 47.2 38.3-59.1 41.8-53.8 45.2-51.1
平均灌浆持续时间 T (d) 38.4 34.0-43.0 36.3-40.3 36.6-41.6
平均灌浆速率 Ra (mg grain-1 d-1) 1.28 1.07-1.57 1.15-1.50 1.25-1.31
最大灌浆速率到达时间 Tmax (d) 19.0 14.9-22.2 18.0-19.8 16.8-21.0
最大灌浆速率 Rmax (mg grain-1 d-1) 2.30 1.72-2.87 1.94-2.63 2.23-2.38
渐增期持续时间 T1 (d) 11.9 9.2-14.2 11.3-12.4 10.4-13.2
渐增期灌浆速率 R1 (mg grain-1 d-1) 0.88 0.72-1.09 0.78-1.02 0.84-0.93
渐增期增重量 W1 (mg grain-1) 10.4 8.0-13.6 9.2-12.1 9.7-11.5
快增期持续时间 T2 (d) 14.2 9.9-18.3 12.7-15.5 12.7-15.7
快增期灌浆速率 R2 (mg grain-1 d-1) 2.02 1.51-2.52 1.70-2.31 1.96-2.08
快增期增重量 W2 (mg grain-1) 28.5 21.9-37.2 25.2-33.3 26.4-31.4
缓增期持续时间 T3 (d) 12.3 9.0-15.9 11.1-13.9 10.8-13.4
缓增期灌浆速率 R3 (mg grain-1 d-1) 0.86 0.53-1.26 0.69-1.10 0.73-0.95
缓增期增重量 W3 (mg grain-1) 10.4 8.0-13.6 9.2-12.1 9.7-11.5

表3

14份参试品种千粒重和籽粒灌浆特征参数方差分析"

图1

不同粒重类型小麦品种的籽粒灌浆速率曲线"

表4

不同粒重类型品种的籽粒灌浆特征参数"

籽粒灌浆特征参数
Grain-filling parameter
高粒重品种
High grain weight cultivar
中等粒重品种
Medium grain weight cultivar
低粒重品种
Low grain weight cultivar
千粒重 TGW (g) 56.5 a 50.0 b 45.1 c
平均灌浆持续时间 T (d) 38.2 a 39.0 a 38.0 a
平均灌浆速率 Ra (mg grain-1 d-1) 1.48 a 1.28 b 1.19 c
最大灌浆速率 Rmax (mg grain-1 d-1) 2.59 a 2.29 b 2.16 c
最大灌浆速率到达时间 Tmax (d) 19.4 a 19.3 a 18.5 b
渐增期持续时间 T1 (d) 12.1 a 12.0 a 11.6 a
渐增期灌浆速率 R1 (mg grain-1 d-1) 0.99 a 0.88 b 0.82 c
渐增期增重量 W1 (mg grain-1) 11.9 a 10.6 b 9.5 c
快增期持续时间 T2 (d) 14.1 a 14.4 a 13.9 a
快增期灌浆速率 R2 (mg grain-1 d-1) 2.27 a 2.00 b 1.89 c
快增期增重量 W2 (mg grain-1) 32.6 a 28.9 b 26.1 c
缓增期持续时间 T3 (d) 11.7 a 12.5 a 12.5 a
缓增期灌浆速率 R3 (mg grain-1 d-1) 1.05 a 0.85 b 0.78 c
缓增期增重量 W3 (mg grain-1) 11.9 a 10.6 b 9.5 c

图2

千粒重与灌浆速率的线性回归 A: 快增期灌浆速率; B: 平均灌浆速率。"

表5

千粒重与籽粒灌浆特征参数的相关系数"

参数
Parameter
T Ra Tmax Rmax T1 R1 W1 T2 R2 W2 T3 R3 W3
TGW 0.03 0.90*** 0.42 0.87*** 0.46 0.85*** 0.97*** 0.23 0.97*** 0.97*** -0.40 0.86*** 0.97***
T -0.13 0.67** -0.21 0.55* -0.04 0.13 0.56* -0.21 0.13 0.36 -0.08 0.13
Ra 0.40 0.87*** 0.43 0.96*** 0.97*** 0.23 0.87*** 0.97*** -0.57* 0.94*** 0.97***
Tmax 0.07 0.80*** 0.38 0.57* 0.85*** 0.07 0.57* -0.42 0.57* 0.57*
Rmax 0.37 0.81*** 0.82*** -0.22 0.97*** 0.82*** -0.19 0.67** 0.82***
T1 0.30 0.57* 0.37 0.37 0.57* -0.17 0.46 0.57*
R1 0.95*** 0.32 0.81** 0.95*** -0.51 0.91*** 0.95***
W1 0.38 0.82*** 0.99*** -0.47 0.92*** 0.99***
T2 -0.22 0.38 -0.51 0.48 0.38
R2 0.82*** -0.19 0.67** 0.82***
W2 -0.48 0.92*** 0.99***
T3 -0.78** -0.47
R3 0.92***
[1] 茹振钢, 冯素伟, 李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48: 3388-3393
Ru Z G, Feng S W, Li G.High yield potential and effective ways of wheat in Yellow and Huai River Valley Facultative Winter Wheat Region.Sci Agric Sin, 2015, 48: 3388-3393 (in Chinese with English abstract)
[2] Zhou Y, He Z H, Sui X X, Xia X C, Zhang X K, Zhang G S.Genetic improvement of grain yield and associated traits in the Northern China Winter Wheat Region from 1960 to 2000.Crop Sci, 2007, 47: 245-253
[3] Gao F M, Ma D Y, Yin G H, Rashieed A, Dong Y, Xiao Y G, Xia X C, Wu X X, He Z H.Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern Yellow and Huai Valley Winter Wheat Zone since 1950.Crop Sci, 2017, 57: 760-773
[4] 肖世和, 何中虎. 小麦产量潜力和品质的改良. 见: 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 497-542
Xiao S H, He Z H.Wheat yield and end use quality improvement in China. In: Zhuang Q S, ed. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 497-542 (in Chinese)
[5] Wang Y Q, Hao C Y, Zheng J, Ge H M, Zhou Y, Ma Z Q, Zhang X Y.A haplotype block associated with thousand kernel weight on chromosome 5DS in common wheat (Triticum aestivum L.). J Integr Plant Biol, 2015, 57: 662-672
[6] Huang X Q, Coster H, M. Ganal W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389
[7] Elouafi I, Nachit M M.A genetic linkage map of the Durum×Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet, 2004, 108: 401-413
[8] Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E.A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865-880
[9] Ma D Y, Yan J, He Z H, Wu L, Xia X C.Characterization of a cell wall invertase geneTaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed, 2010, 29: 43-52
[10] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y.Identification and development of a functional marker ofTaGW2 associated with grain weight in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223
[11] Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S. Zhang X Y.The wheat (T. aestivum) sucrose synthase 2 gene(TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49-61
[12] Zhang L, Zhao Y L, Gao L F, Zhao G Y, Zhou R H, Zhang B S, Jia J Z.TaCKX6-D1, the ortholog of rice OsCKXl, is associated with grain weight in hexaploid wheat. New Phytol, 2012, 195: 574-584
[13] Chang J Z, Zhang J N, Mao X G, Li A, Jia J Z, Jing R L.Polymorphism ofTaSAPl-Al and its association with agronomic traits in wheat. Planta, 2013, 237: 1495-1508
[14] Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S.Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits ofTaGS1a in wheat. Field Crops Res, 2013, 154: 119-125
[15] Zhang Y J, Liu J D, Xia X C, He Z H.TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014, 34: 1097-1107
[16] Dong L, Wang F, Liu T, Dong Z, Li A, Jing R, Mao L, Li Y, Liu X, Zhang K, Wang D.Natural variation ofTaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol Breed, 2014, 34: 937-947
[17] Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X.TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotech J, 2016, 14: 1269-1280
[18] Yue A Q, Li A, Mao X G, Chang X P, Li R Z, Jing R L.Identification and development of a functional marker from6-SFT-A2 associated with grain weight in wheat. Mol Breed, 2015, 35: 63
[19] Dngid S D, Brule-Babel A L. Rate and duration of grain filling in five spring wheat (Triticum aestivum L.) genotypes. Can J Plant Sci, 1994, 74: 681-686
[20] Saini H S, Westgate M E.Reproductive development in grain crops during drought.Adv Agron, 1999, 68: 59-96
[21] Zahedi M, Jenner C F.Analysis of effects in wheat of high temperature on grain filling attributes estimated from mathematical models of grain filling.J Agric Sci, 2003, 141: 203-212
[22] Yang J C, Zhang J H.Grain filling of cereals under soil drying.New Phytol, 2006, 169: 223-236
[23] Kamaluddin, Singh R M, Abdin M Z, Khan M A, Alam T, Kham S, Prasad L C, Joshi A K. Inheritance of grain filling duration in spring wheat (Triticum aestivum L. em Thell). J Plant Biol, 2007, 50: 504-507
[24] Wong L S L, Baker R J. Selection for time to maturity in spring wheat.Crop Sci, 1986, 26: 1171-1175
[25] Talbert L E, Lanning S P, Murphy R L, Martin J M.Grain fill duration in twelve hard red spring wheat crosses: genetic variation and association with other agronomic traits.Crop Sci, 2001, 41: 1390-1395
[26] 吴晓丽, 汤永禄, 李朝苏, 吴春, 黄钢, 马蓉. 四川盆地小麦籽粒的灌浆特性. 作物学报, 2014, 40: 337-345
Wu X L, Tang Y L, Li C S, Wu C, Huang G, Ma R.Characteristics of grain filling in wheat growing in Sichuan basin.Acta Agron Sin, 2014, 40: 337-345 (in Chinese with English abstract)
[27] Dias A S, Lidon F C.Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis.J Agron Crop Sci, 2009, 195: 137-147
[28] Motzo R, Giunta F, Pruneddu G.The response of rate and duration of grain filling to long-term selection for yield in Italian durum wheats.Crop Pasture Sci, 2010, 61: 162-169
[29] 曾浙荣, 庞家智, 周桂英, 赵双宁, 曹梅林. 我国北部冬麦区小麦品种籽粒灌浆特性的研究. 作物学报, 1996, 22: 720-728
Zeng Z R, Pang J Z, Zhou G Y, Zhao S N, Cao M L.Grain filling properties of winter wheat varieties in northern part of China. Acta Agron Sin, 1996, 22: 720-728 (in Chinese with English abstract)
[30] 吴少辉, 段国辉, 高海涛, 张学品, 温红霞, 余四平, 马飞. 黄淮麦区水、旱生态型小麦籽粒灌浆进程研究. 麦类作物学报, 2009, 29: 1015-1021
Wu S H, Duan G H, Gao H T, Zhang X P, Wen H X, Yu S P, Ma F.Research on wheat grain filling process of water and dryland ecological types of wheat in Huang-Huai area.J Triticeae Crops, 2009, 29: 1015-1021 (in Chinese with English abstract)
[31] 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 闫长生, 游光霞, 肖世和. 不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析. 作物学报, 2008, 34: 1750-1756
Wang R X, Zhang X Y, Wu L, Wang R, Hai L, Yan C S, You G X, Xiao S H.QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat.Acta Agron Sin, 2008, 34: 1750-1756 (in Chinese with English abstract)
[1] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[2] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[3] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[4] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[5] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[6] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[7] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[8] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[9] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[10] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[11] 司文洁,吴林楠,郭利建,周梦蝶,刘香利,马猛,赵惠贤. 小麦粒重相关基因TaCYP78A5功能标记开发及验证[J]. 作物学报, 2019, 45(12): 1905-1911.
[12] 李艳霞,杨卫兵,尹燕枰,郑孟静,陈金,杨东清,骆永丽,庞党伟,李勇,王振林. 小麦小穗不同粒位粒重形成的生理特性差异[J]. 作物学报, 2019, 45(11): 1715-1724.
[13] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[14] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[15] 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!