欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 131-139.doi: 10.3724/SP.J.1006.2020.94048

• 耕作栽培·生理生化 • 上一篇    下一篇

三种豆科绿肥作物茎和叶角质层蜡质化学组成分析

栗扬,姚露花,郭欣,赵晓,黄蕾,王登科,张学风,肖前林,杨瑞吉,郭彦军()   

  1. 西南大学农学与生物科技学院, 重庆 400716
  • 收稿日期:2019-03-24 接受日期:2019-05-12 出版日期:2020-01-12 网络出版日期:2019-07-22
  • 通讯作者: 郭彦军
  • 作者简介:E-mail: 286923599@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(31670407);中央高校基本科研业务费资助(XDJK2018B021)

Chemical compositions of cuticular waxes on stems and leaves of three legume green manure crops

LI Yang,YAO Lu-Hua,GUO Xin,ZHAO Xiao,HUANG Lei,WANG Deng-Ke,ZHANG Xue-Feng,XIAO Qian-Lin,YANG Rui-Ji,GUO Yan-Jun()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2019-03-24 Accepted:2019-05-12 Published:2020-01-12 Published online:2019-07-22
  • Contact: Yan-Jun GUO
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31670407);Fundamental Research Funds for the Central Universities(XDJK2018B021)

摘要:

植物角质层蜡质是一类覆盖于植物表层的疏水有机化合物, 在保护植物免受生物与非生物逆境胁迫中发挥着重要作用。为了更好地了解和认识角质层蜡质在夏季绿肥作物抗逆性中的作用, 选择柽麻(Crotalaria juncea)、田菁(Sesbania cannabina)和竹豆(Phaseolus calcaratus) 3种夏季豆科绿肥作物, 鉴定茎和叶蜡质组分, 并分析蜡质总量、各组分含量及碳链分布特征。共鉴定出8类化合物, 包括脂肪酸、初级醇、醛、烷烃、烷基酯、二醇、萜类和固醇类化合物, 其中前4种以同系物形式存在且为所有植物茎和叶共有成分(柽麻茎中未检出脂肪酸), 说明烷合成和醇合成途径是主要的2种蜡质合成途径。田菁茎中鉴定出二醇化合物, 其结构初步解析为1,18-30烷醇和1,16-30烷醇。3种绿肥作物茎和叶蜡质总量存在显著种间及部位差异, 其中柽麻茎蜡质总含量为16.33 μg cm -2, 显著高于田菁茎(6.45 μg cm -2)和竹豆茎(0.72 μg cm -2)。就茎和叶比较, 柽麻茎显著高于叶片, 其他2种植物茎和叶之间无显著差异。柽麻茎蜡质中, 烷烃为优势成分, 占蜡质总量的57.38%; 叶片以初级醇为优势成分, 占蜡质总量的50.12%。田菁茎、叶蜡质中的优势成分均为初级醇, 分别占总蜡质的30.12%和71.21%。竹豆茎、叶蜡质中的优势成分均为烷烃, 分别占总蜡质的40.79%和39.27%。各组分优势化合物的碳链长度在不同物种、不同部位也存在一定差异, 说明参与蜡质合成的基因在物种、器官间有所不同。这些结果为今后从分子水平上揭示角质层蜡质参与夏季绿肥作物抗逆机制提供了理论基础。

关键词: 角质层蜡质, 绿肥作物, 柽麻, 田菁, 竹豆

Abstract:

Cuticular waxes are hydrophobic compounds covering plant surfaces and play vital roles in protecting plants from various biotic and abiotic stresses. However, less is known as related to the cuticular wax on leaves or stems of summer legume green manures. In the current study, stems and leaves from three summer legume green manure crops grown in the fields were sampled, including Crotalaria juncea, Sesbania cannabina, and Phaseolus calcaratus Roxbwere. Using gas chromatography-mass spectrometer (GC-MS), we identified most of the chemical compounds on these plant species. In total, eight classes of wax compounds were identified, including fatty acids, primary alcohols, aldehydes, alkanes, alkyl esters, diols, terpenoids and sterols. Among these compounds, fatty acids, primary alcohols, aldehydes and alkanes with serial homologs could be observed in stems and leaves of all tested plant species excepting fatty acids in leaves of C. juncea, with their weight proportions accounting for more than 60% in total wax. This suggested that alkane forming and alcohol forming pathways were two major biosynthesis pathways in these plants. In stems of S. cannabina, two compounds were identified as diols with the functional hydroxyl group located at 1,18 and 1,16 positions. Using gas chromatography with flam ionized detector (GC/FID), we quantified the total wax and wax compounds. Total wax coverage differed among three plant species and between two organs. The total stem wax coverage was the highest in C. juncea (16.33 μg cm -2), followed by S. cannabina (6.45 μg cm -2) and P. calcaratus (0.72 μg cm -2). The total wax coverage on stems of C. juncea was significantly higher than that on leaves, whereas no significant difference in total wax coverage between stems and leaves was observed in S. cannabina and P. calcaratus. The predominant wax class differed in plant species and organs. For C. juncea, alkanes were the predominant composition in stems accounting for 57.38% of total wax, whereas primary alcohols were the predominant composition in leaves accounting for 50.12%. For S. cannabina, both stems and leaves were dominated by primary alcohols, accounting for 30.12% and 71.21% of total wax, respectively. For P. calcaratus, both stems and leaves were dominated by alkanes, accounting for 40.79% and 39.27% of total wax, respectively. We further analyzed the chain length distributions of the wax classes in stems and leaves. Generally, fatty acids, primary alcohols and aldehydes were consisted of serials of even carbon number homologs, whereas alkanes were consisted of both even- and odd-carbon number homologs with odd number predominance over even number. The predominant compound in each wax class also differed between plant species and organs. The dominant fatty acids on stems and leaves in C. juncea, S. cannabina, and P. calcaratus were C30, C30 and C26, and C28, respectively; the dominant primary alcohols were C28, C30, and C28 and C32 respectively; the dominant aldehydes were C32 and C30, C30, and C30 and C28, respectively; while the dominant alkanes were C31, C29, and C31, respectively. The terpenoids identified in current study were β-amyrin, α-amyrin and lupenol. The variations of predominant wax class and wax compound between plant species and organs implied that genes involved in wax biosynthesis might also be different. These results provide basic knowledges in studying the molecular mechanisms of cuticular waxes in legume green manure crops fronting biotic and abiotic stresses.

Key words: Cuticular wax, green manures, Crotalaria juncea, Phaseolus calcaratus, Sesbania cannabina

图1

田菁茎蜡质中双醇化学结构分析 A: 1,18 -30双醇; B: 1,16 30-双醇。"

图2

柽麻、田菁、竹豆的茎和叶蜡质总量 数据柱上不同小写字母表示品种内差异显著(P < 0.05)。"

图3

柽麻茎和叶中主要蜡质组分实际含量"

图4

田菁茎和叶主要蜡质组分实际含量"

图5

竹豆茎和叶主要蜡质组分实际含量"

图6

柽麻茎和叶蜡质各组分同系物相对含量"

图7

田菁茎和叶蜡质各组分同系物相对含量"

图8

竹豆茎和叶蜡质各组分同系物相对含量"

[1] N’Dayegamiye A, Tran T S . Effects of green manures on soil organic matter and wheat yields and N nutrition. Can J Soil Sci, 2001,81:371-382.
doi: 10.4141/S00-034
[2] Yeats T H, Rose J K C . The formation and function of plant cuticles. Plant Physiol, 2013,163:5-20.
doi: 10.1104/pp.113.222737
[3] Gonzalez A, Ayerbe L . Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica, 2010,172:341-349.
doi: 10.1007/s10681-009-0027-0
[4] Skorska E, Szwarc W . Influence of UV-B radiation on young triticale plants with different wax cover. Biol Planta, 2007,51:189-192.
doi: 10.1007/s10535-007-0038-4
[5] Zhu M, Riederer M, Hildebrandt U . Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis. Fungal Biol, 2017,121:716-728.
doi: 10.1016/j.funbio.2017.05.003 pmid: 28705398
[6] 朱命炜, 王红星, 李建军, 李俊英, 王太霞, 李景原 . 木立芦荟发育过程中叶表皮角质膜和蜡质的变化. 电子显微学报, 2004,23:670-673.
Zhu M W, Wang H X, Li J J, Li J Y, Wang T X, Li J Y . Changes in the cuticle and wax of the leaves during the development of aloe ( Aloe arborescens Mill.). J Chin Elect Microscopy Soc, 2004,23:670-673 (in Chinese with English abstract).
[7] 韦存虚, 王建波, 陈义芳, 周卫东, 孙国荣 . 盐生植物星星草叶表皮具有泌盐功能的蜡质层. 生态学报, 2004,24:2451-2456.
Wei C X, Wang J B, Cheng Y F, Zhou W D, Sun G R . Epicuticular wax of leaf epidermis: a functional structure for salt excretion in a halophyte Puccinellia tenuiflora. Acta Ecol Sin, 2004,24:2451-2456 (in Chinese with English abstract)
[8] Jetter R, Riederer M . Composition of cuticular waxes onOsmunda regalis Fronds. J Chem Ecol, 2000,26:399-412.
doi: 10.1023/A:1005409405771
[9] Lee S B, Suh M C . Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep, 2015,34:557.
doi: 10.1007/s00299-015-1772-2 pmid: 25693495
[10] 李晓婷, 赵晓, 王登科, 黄蕾, 姚露花, 王党军, 和玉吉, 郭彦军 . 天然草地植物叶角质层蜡质的化学组成及其对自由放牧的响应. 草业学报, 2018,27(6):137-147.
Li X T, Zhao X, Wang D K, Huang L, Yao L H, Wang D J, He Y J, Guo Y J . Chemical profiles of cuticular waxes in arid steppe plant species and their responses to continuous grazing. Acta Pratacult Sin, 2018,27(6):137-147 (in Chinese with English abstract).
[11] Bernard A, Joubès J . Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res, 2013,52:110-129.
doi: 10.1016/j.plipres.2012.10.002
[12] Kunst L, Samuels L . Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol, 2009,12:721-727.
doi: 10.1016/j.pbi.2009.09.009 pmid: 19864175
[13] Kosma D K, Rowland O . Answering a four decade-old question on epicuticular wax biosynthesis. J Exp Bot, 2016,67:2538-2540.
doi: 10.1093/jxb/erw144 pmid: 27162275
[14] Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y . Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa). Plant J, 2005,42:689-707.
doi: 10.1111/j.1365-313X.2005.02405.x pmid: 15918883
[15] Zhou L Y, Ni E D, Yang J W, Zhou H, Liang H, Li J, Jiang D G, Wang Z H, Liu Z L, Zhuang C X . Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One, 2013,8:12.
doi: 10.1371/journal.pone.0065139 pmid: 23741473
[16] 杜青峰, 王党军, 于翔宇, 姚露花, 和玉吉, 王瑞, 马生兰, 郭彦军 . 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016,25(3):225-233.
doi: 10.11686/cyxb2015483
Du Q F, Wang D J, Yu X Y, Yao L H, He Y J, Wang R, Ma S L, Guo Y J . The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake. Acta Pratac Sin, 2016,25(3):225-233 (in Chinese with English abstract)
doi: 10.11686/cyxb2015483
[17] 张国发, 吴园园, 徐太海, 梁彦涛 . 田菁秸秆还田对松嫩平原盐碱土改良效果的研究. 大庆师范学院学报, 2018,38(3):48-50.
Zhang G F, Wu Y Y, Xu T H, Liang Y T . The effects of returning Sesbania cannabina straw on improving soil quality in alkalized soils of Songnen Plain. J Daqing Norm Univ, 2018,38(3):48-50 (in Chinese).
[18] 杨湘如, 郑永发 . 幼龄果园套种竹豆生态效益试验研究. 中国水土保持, 1991, (11):29-30.
Yang X R, Zheng Y F . The ecological profits of Phaseolus calcaratns intercropping with young orchard. Chin Water Soil Conserv, 1991, (11):29-30 (in Chinese).
[19] Guo Y, Li J J, Busta L, Jetter R . Coverage and composition of cuticular waxes on the fronds of the temperate fernsPteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris. Ann Bot, 2018,122:555-568.
doi: 10.1093/aob/mcy078 pmid: 30252045
[20] Jetter R, Riederer M, Seyer A, Mioskowski C . Homologous long-chain alkanediols from Papaver leaf cuticular waxes. Phytochemistry, 1996,42:1617-1620.
doi: 10.1016/0031-9422(96)00180-X
[21] Vermeer C P, Nastold P, Jetter R . Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes ofRicinus communis L. Phytochemistry, 2003,62:433-438.
doi: 10.1016/s0031-9422(02)00560-5 pmid: 12620356
[22] Busta L, Jetter R . Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes. Phytochem Rev, 2018,17:1275-1304.
doi: 10.1007/s11101-017-9542-0
[23] Wen M, Jetter R . Composition of secondary alcohols, ketones, alkanediols, and ketols inArabidopsis thaliana cuticular waxes. J Exp Bot, 2009,60:1811-1821.
doi: 10.1093/jxb/erp061 pmid: 19346242
[24] Hegebarth D, Buschhaus C, Wu M, Bird D, Jetter R . The composition of surface wax on trichomes ofArabidopsis thaliana differs from wax on other epidermal cells. Plant J, 2016,88:762-774.
doi: 10.1111/tpj.13294 pmid: 27496682
[25] Guo Y J, Jetter R . Comparative analyses of cuticular waxes on various organs of potato (Solanum tuberosum L.). J Agric Food Chem, 2017,65:3926-3933.
doi: 10.1021/acs.jafc.7b00818 pmid: 28467851
[26] Guo Y J, Busta L, Jetter R . Cuticular wax coverage and composition differ among organs ofTaraxacum officinale. Plant Physiol Biochem, 2017,115:372-379.
doi: 10.1016/j.plaphy.2017.04.004 pmid: 28432976
[27] Lee S, Kim H, Kim R, Suh M . Overexpression of Arabidopsis MYB96 confers drought resistance inCamelina sativa via cuticular wax accumulation. Plant Cell Rep, 2014,33:1535-1546.
doi: 10.1007/s00299-014-1636-1
[28] Rowland O, Zheng H, Hepworth S R, Lam P, Jetter R, Kunst L . CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol, 2006,142:866-877.
doi: 10.1104/pp.106.086785 pmid: 16980563
[29] Razeq F M, Kosma D K, Rowland O, Molina I . Extracellular lipids ofCamelina sativa: characterization of chloroform- extractable waxes from aerial and subterranean surfaces. Phytochemistry, 2014,106:188-196.
doi: 10.1016/j.phytochem.2014.06.018
[30] Javelle M, Vernoud V, Depege-Fargeix N, Arnould C, Oursel D, Domergue F, Sarda X, Rogowsky P M . Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol, 2010,154:273-286.
doi: 10.1104/pp.109.150540 pmid: 20605912
[31] Hansjakob A, Riederer M, Hildebrandt U . Appressorium morphogenesis and cell cycle progression are linked in the grass powdery mildew fungusBlumeria graminis. Fungal Biol, 2012,116:890-901.
doi: 10.1016/j.funbio.2012.05.006 pmid: 22862917
[32] Jetter R, Kunst L, Samuels A L. Composition of plant cuticular waxes. In: Riederer C. Muller, eds. Biology of the Plant Cuticle. Oxford: Blackwell Publishing Ltd, 2006. pp 145-181.
[33] Haslam T M, Mañas-Fernández A, Zhao L, Kunst L . Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol, 2012,160:1164-1174.
doi: 10.1104/pp.112.201640
[1] 徐熠,彭阳,李帅,赵秋棱,张双娟,李加纳,倪郁. 甘蓝型油菜烷羟化酶基因MAH1的克隆与表达分析[J]. 作物学报, 2017, 43(05): 640-647.
[2] 李帅,赵秋棱,彭阳,徐熠,李加纳,倪郁*. SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J]. 作物学报, 2016, 42(12): 1827-1833.
[3] 周玲艳,姜大刚,李静,周海,曹伟炜,庄楚雄. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系[J]. 作物学报, 2012, 38(06): 1115-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!