作物学报 ›› 2020, Vol. 46 ›› Issue (01): 140-146.doi: 10.3724/SP.J.1006.2020.92022
王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明()
WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming()
摘要:
增加穗粒数对水稻高产品种培育至关重要。其遗传基础复杂, 由多基因控制。水稻染色体片段代换系可以将多基因控制的复杂性状分解, 因而是理想的遗传研究材料。本研究通过高代回交和自交结合分子标记辅助选择方法, 鉴定了一个以日本晴为受体、西恢18为供体亲本的、含有15个代换片段的增加穗粒数的水稻染色体片段代换系Z747, 平均代换长度为4.49 Mb。与受体日本晴相比, Z747的每穗总粒数、一次枝梗数、二次枝梗数、穗长和粒长显著增加, 粒宽显著变窄、结实率显著降低, 但结实率仍为81%。进一步以日本晴和Z747杂交构建的次级F2群体鉴定出46个相关性状的QTL, 分布于水稻1号、2号、3号、5号、6号、9号、11号和12号染色体上。其中qGPP12、qPH-3-1、qPH-3-2等12个QTL可能与已克隆的基因等位, qSPP9等34个可能是新鉴定的QTL。Z747的每穗总粒数由2个具有增加粒数效应的QTL (qSPP3和qSPP5)和1个具有减少粒数效应的QTL (qSPP9)控制。研究结果对主效QTL的精细定位和克隆、以及有利基因的单片段代换系培育有重要意义。
[1] |
Kotla A, Agarwal S, Yadavalli V R, Vishnu P V, Dhavala V N C, Neelamraju S . Quantitative trait loci and candidate genes for yield and related traits in Madhukar × Swarna RIL population of rice. J Crop Sci Biotechnol, 2013,16:35-44.
doi: 10.1007/s12892-012-0093-z |
[2] | 郭泽西, 马海燕, 马亚飞, 袁雪 . 水稻穗粒数遗传基础研究进展. 天津农业科学, 2017,23(7):94-98. |
Guo Z X, Ma H Y, Ma Y F, Yuan X . Basal research progresses on the genetics of grains number per panicle in rice. J Tianjin Agric Sci, 2017,23(7):94-98 (in Chinese with English abstract). | |
[3] |
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M . Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[4] |
Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X . The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016,12:e1006386.
doi: 10.1371/journal.pgen.1006386 pmid: 27764111 |
[5] |
Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shang-Guan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A H, Wang Z Q, Sang T, Wang Z X, Han B . An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25:3360-3376.
doi: 10.1105/tpc.113.113589 |
[6] |
Gao F, Wang K, Liu Y, Chen Y P, Chen P, Shi Z Y, Luo J, Jiang D Q, Fan F F, Zhu Y G, Li S Q . Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants, 2015,2:15196.
doi: 10.1038/nplants.2015.196 pmid: 27250748 |
[7] |
Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q . PAY1 improves plant architecture and enhances grain yield in rice. Plant J, 2015,83:528-536.
doi: 10.1111/tpj.12905 pmid: 26095647 |
[8] |
Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q . NOG1 increases grain production in rice. Nat Commun, 2017,8:1497.
doi: 10.1038/s41467-017-01501-8 pmid: 29133783 |
[9] |
Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X . GRAIN SIZE AND NUMBER 1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018,30:871-888.
doi: 10.1105/tpc.17.00959 pmid: 29588389 |
[10] |
Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F . Natural variation inGhd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147 |
[11] |
Sheng P K, Wu F Q, Tan J J, Zhang H, Ma W W, Chen L P, Wang J C, Wang J, Zhu S S, Guo X P, Wang J L, Zhang X, Cheng Z J, Bao Y Q, Wu C Y, Liu X M, Wan J M . A CONSTANS-like transcriptional activator,OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Mol Biol, 2016,92:209-222.
doi: 10.1007/s11103-016-0506-3 pmid: 27405463 |
[12] |
Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N . Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics, 2010,10:339-347.
doi: 10.1007/s10142-010-0167-2 pmid: 20376514 |
[13] |
Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F . Fine mapping of a major quantitative trait loci,qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet, 2008,116:789-796.
doi: 10.1007/s00122-008-0711-9 |
[14] |
Liu T M, Mao D H, Zhang S P, Xu C G, Xing Y Z . Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice(Oryza sativa). Theor Appl Genet, 2009,118:1509-1517.
doi: 10.1007/s00122-009-0999-0 |
[15] |
Ren D Y, Xu Q K, Qiu Z N, Cui Y J, Zhou T T, Zeng D L, Guo L B, Qian Q . FON4 prevents the multi-floret spikelet in rice. Plant Biotechnol J, 2019,17:1007-1009.
doi: 10.1111/pbi.13083 pmid: 30677211 |
[16] |
Zhang T, Li Y F, Ma L, Sang X C, Ling Y H, Wang Y T, Yu P, Zhuang H, Huang J Y, Wang N, Zhao F M, Zhang C W, Yang Z L, Fang L K, He G H . LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc Natl Acad Sci USA, 2017,114:9984-9989.
doi: 10.1073/pnas.1700504114 pmid: 28847935 |
[17] | 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华 . 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016,38(11):1-7. |
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H . Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn) , 2016,38(11):1-7 (in Chinese with English abstract). | |
[18] | 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明 . 水稻高秆染色体片段代换系Z1377 的鉴定及重要农艺性状QTL 定位. 作物学报, 2018,44:1477-1484. |
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M . Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract). | |
[19] |
Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D . Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991,127:181-197.
pmid: 1673106 |
[20] |
Wang J, Wu G W, Peng C F, Zhou X G, Li W T, He M, Wang J C, Yin J J, Yuan C, Ma W W, Ma B T, Wang Y P, Chen W L, Qin P, Li S G, Chen X W . The receptor-like cytoplasmic kinase OsRLCK102 regulatesXA21-mediated immunity and plant development in rice. Plant Mol Biol Rep, 2016,34:628-637.
doi: 10.1111/tpj.14093 pmid: 30222251 |
[21] |
Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X . Identification and characterization ofHTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009,230:649-658.
doi: 10.1007/s00425-009-0975-6 |
[22] |
Li C B, Zhou A L, Sang T . Genetic analysis of rice domestication syndrome with the wild annual species,Oryza nivara. New Phytol, 2006,170:185-193.
doi: 10.1111/j.1469-8137.2005.01647.x pmid: 16539615 |
[23] |
Cui X K, Jin P, Cui X, Gu L F, Lu Z K, Xue Y M, Wei L Y, Qi J F, Song X W, Luo M, An G, Cao X F . Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci USA, 2013,110:1953-1958.
doi: 10.1073/pnas.1217020110 pmid: 23319643 |
[24] |
Luan W J, Liu Y Q, Zhang F X, Song Y L, Wang Z Y, Peng Y K, Sun Z X . OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J, 2011,9:513-524.
doi: 10.1111/j.1467-7652.2010.00570.x |
[25] |
Yan D W, Zhang X M, Zhang L, Ye S H, Zeng L J, Liu J Y, Li Q, He Z H . CURVWD CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Plant J, 2015,82:12-24.
doi: 10.1111/tpj.12784 pmid: 25647350 |
[26] |
Liu Z W, Cheng Q, Sun Y F, Dai H X, Song G Y, Guo Z B, Qu X F, Jiang D M, Liu C, Wang W, Yang D C . A SNP inOsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. Plant Mol Biol, 2015,87:17-30.
doi: 10.1007/s11103-014-0257-y pmid: 25307286 |
[27] |
Yokosho K, Yamaji N, Ma J F . OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot, 2016,67:5485-5494.
doi: 10.1093/jxb/erw314 pmid: 27555544 |
[28] |
Li S C, Li W B, Huang B, Cao X M, Zhou X Y, Ye S M, Li C B, Gao F Y, Zou T, Xie K L, Ren Y, Ai P, Tang Y F, Li X M, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P . Natural variation inPTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013,4:2793.
doi: 10.1038/ncomms3793 pmid: 24240868 |
[29] |
Zhang C, Shen Y, Tang D, Shi W Q, Zhang D M, Du G J, Zhou Y H, Liang G H, Li Y F, Cheng Z K . The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet, 2018,14:e1007769.
doi: 10.1371/journal.pgen.1007769 pmid: 30419020 |
[30] |
Lu W Y, Deng M J, Guo F, Wang M Q, Zeng Z H, Han N, Yang Y N, Zhu M Y, Bian H W . Suppression ofOsVPE3 enhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice, 2016,9:65.
doi: 10.1186/s12284-016-0138-x pmid: 27900724 |
[31] |
Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z . Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016,44:370-380.
doi: 10.1556/0806.44.2016.022 |
[32] | 徐建军, 梁国华 . 水稻染色体片段代换系群体的构建及应用研究进展. 安徽农业科学, 2011,39:1935-1938. |
Xu J J, Liang G H . Research progress of construction and application of rice ( Oryza stativa L.) chromosome segment substitution lines. J Anhui Agric Sci, 2011,39:1935-1938 (in Chinese with English abstract). | |
[33] |
Wang M, Zhang T, Peng H, Luo S, Tan J J, Jiang K F, Heng Y Q, Zhang X, Guo X P, Zheng J K, Cheng Z J . RicePremature Leaf Senescence 2, encoding a glycosyltransferase (GT), is involved in leaf senescence. Front Plant Sci, 2018,9:560.
doi: 10.3389/fpls.2018.00560 pmid: 29755498 |
[34] |
Marri P R, Sarla N, Reddy L V, Siddiq E A . Identification and mapping of yield and yield related QTLs from an Indian accession ofOryza rufipogon. BMC Genet, 2005,6:1-14.
doi: 10.1186/1471-2156-6-1 |
[35] |
Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y . RiceSIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol, 2011,189:869-882.
doi: 10.1111/j.1469-8137.2010.03538.x pmid: 21083564 |
[36] |
Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043.
doi: 10.1038/nplants.2017.43 pmid: 28394310 |
[37] |
Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D . Natural variation at theDEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
doi: 10.1038/ng.352 pmid: 19305410 |
[38] |
Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X . The novel quantitative trait locusGL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
|