欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 140-146.doi: 10.3724/SP.J.1006.2020.92022

• 研究简报 • 上一篇    下一篇

增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位

王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明()   

  1. 西南大学水稻研究所/西南大学农业科学研究院, 重庆 400715
  • 收稿日期:2019-04-15 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2019-09-11
  • 通讯作者: 赵芳明
  • 作者简介:E-mail: wangdachuan6@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100202);重庆市科委主题专项(CSTC, 2016shms-ztzx0017);西南大学基本业务费专项创新团队项目资助(XDJK2017A004)

Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits

WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming()   

  1. Rice Research Institute, Southwest University/Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2019-04-15 Accepted:2019-08-09 Published:2020-01-12 Published online:2019-09-11
  • Contact: Fang-Ming ZHAO
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100202);Project of Chongqing Science & Technology Commission(CSTC, 2016shms-ztzx0017);Fundamental Research Funds for the Central Universities(XDJK2017A004)

摘要:

增加穗粒数对水稻高产品种培育至关重要。其遗传基础复杂, 由多基因控制。水稻染色体片段代换系可以将多基因控制的复杂性状分解, 因而是理想的遗传研究材料。本研究通过高代回交和自交结合分子标记辅助选择方法, 鉴定了一个以日本晴为受体、西恢18为供体亲本的、含有15个代换片段的增加穗粒数的水稻染色体片段代换系Z747, 平均代换长度为4.49 Mb。与受体日本晴相比, Z747的每穗总粒数、一次枝梗数、二次枝梗数、穗长和粒长显著增加, 粒宽显著变窄、结实率显著降低, 但结实率仍为81%。进一步以日本晴和Z747杂交构建的次级F2群体鉴定出46个相关性状的QTL, 分布于水稻1号、2号、3号、5号、6号、9号、11号和12号染色体上。其中qGPP12、qPH-3-1、qPH-3-2等12个QTL可能与已克隆的基因等位, qSPP9等34个可能是新鉴定的QTL。Z747的每穗总粒数由2个具有增加粒数效应的QTL (qSPP3qSPP5)和1个具有减少粒数效应的QTL (qSPP9)控制。研究结果对主效QTL的精细定位和克隆、以及有利基因的单片段代换系培育有重要意义。

关键词: 水稻, 染色体片段代换系, 粒数, QTL定位

Abstract:

Increasing grain number per panicle is important for rice breeding for high yield. Its inheritance is very complex and controlled by many genes. Chromosome segment substitution lines can dissect complex traits controlled by many genes, and thus are ideal genetic research materials. Here, an excellent rice chromosome segment substitution line Z747 with increased grain number was identified from recipient Nipponbare and donor Xihui 18 through advanced backcrossing and inbreeding combined SSR marker-assisted selection. Z747 carried fifteen substitution segments with 4.49 Mb of average length. Compared with Nipponbare, Z747 had significantly increased spikelet number per panicle, number of primary branches, number of secondary branches, panicle length and grain length, and decreased grain width and seed setting rate. However, the seed setting rate in Z747 was still up to 81%. Furthermore, secondary F2 population from crosses between Nipponbare and Z747 was used to map QTL for related traits. A total of 46 QTLs distributed on chromosomes 1, 2, 3, 5, 6, 9, 11, and 12 were detected. Among them, 12 QTLs such as qGPP12, qPH-3-1, and qPH-3-2 etc. might be alleles of cloned genes, and the remaining 34 QTLs such as qSPP9 etc. might not be identified in the past. The spikelet number per panicle of Z747 was mainly controlled by two QTLs (qSPP3 and qSPP5) with effects of increasing spikelet number and one (qSPP9) with decreasing effects. These results are important for fine mapping and cloning of major QTL, and developing single-segment substitution lines carrying favorable QTLs.

Key words: rice, chromosome segment substitution lines, grain number, QTL mapping

图1

Z747的代换片段及携带的QTL 每条染色体左侧为物理距离(Mb)、定位的QTL; 右侧为标记名称、代换区间(框内标记)和代换长度(黑箭头指向)。PH: 株高; PL: 穗长; NPB: 一次枝梗数; NSB: 二次枝梗数; GPP: 每穗实粒数; SPP: 每穗总粒数; SSR: 结实率; GL: 粒长; GW: 粒宽; RLW: 谷粒长宽比; GWT: 千粒重。部分有上标[20]~[30]的QTL表示可能与已克隆的基因等位。[20]: OsRLCK102; [21]: HTD2; [22]: pbr2; [23]: JMJ703; [24]: ND1; [25]: DFO1; [26]: OsMCA1; [27]: OsFRDL1; [28]: PTB1; [29]: DCM1; [30]: OsVPE3。"

图2

日本晴和Z747的表型"

表1

日本晴和Z747及F2群体各性状统计参数"

性状
Trait
平均值±标准差(亲本)
Mean±SD (parents)
F2群体
F2 population
日本晴
Nipponbare
Z747 平均值±标准差
Mean±SD
范围
Range
偏度
Skewness
峰度
Kurtosis
株高 Plant height (cm) 88.1±3.4 91.8±6.9 91.9±8.2 68.0-130.8 0.39 0.31
穗长Panicle length (cm) 19.7±1.2 23.3±1.3** 19.3±1.6 14.8-27.3 -0.18 0.57
有效穗数Panicle number 19.3±5.1 15.5±6.4 15.6±5.5 3.0-36.0 0.40 -0.03
一次枝梗数Number of primary branch 7.4±0.5 12.2±1.3** 8.5±1.1 6.9-13.4 -0.15 0.27
二次枝梗数Number of secondary branch 14.3±1.7 40.5±1.2** 15.1±4.3 7.4-45.6 0.03 0.71
每穗总粒数Spikelet number per panicle 110.7±16.4 173.0±49.6** 94.3±19.9 21.9-221.7 -0.19 0.39
每穗实粒数Grain number per panicle 101.4±16.5 139.8±41.2 79.4±15.6 10.1-142.5 -0.23 0.65
结实率Seed setting rate (%) 91.0±2.0 81.0±0.7** 85.1±12.9 10.9-96.3 -2.17 10.44
粒长Grain length (mm) 7.17±0.24 7.93±0.04** 7.45±0.47 6.61-10.05 0.36 1.81
粒宽Grain width (mm) 3.40±0.08 3.23±0.05* 3.34±0.13 2.38-3.52 -0.38 0.26
千粒重1000-grain weight (g) 24.6±1.6 25.5±0.7 25.5±1.8 21.0-32.3 0.28 1.27
单株产量Yield per plant (g) 38.6±9.8 40.9±5.3 31.7±12.4 2.4-72.5 0.45 0.20

表2

Z747携带的水稻重要农艺性状QTL"

性状
Trait
QTL 染色体
Chr.
连锁标记
Linked marker
加性效应
Additive effect
贡献率
Var. (%)
P
P-value
可能的等位基因
Possible alleles
株高 qPH-3-1 3 RM5474 -7.79 9.45 0.0004 OsRLCK102[20]
Plant height qPH-3-2 3 RM3417 5.74 5.15 0.0003 HTD2 [21]
qPH-3-3 3 RM6266 5.03 10.30 <0.0001
qPH5 5 RM5874 13.67 27.54 0.0003
qPH11 11 RM7120 5.31 4.39 0.0090
穗长 qPL3 3 RM6266 0.51 2.70 0.0020
Panicle length qPL11 11 RM7120 1.28 6.61 0.0012
一次枝梗数 qNPB2 2 RM1385 0.59 6.07 0.0002 Pbr2[22]
Number of primary branch qNPB3 3 RM3766 0.83 7.45 0.0012
qNPB9 9 RM24537 1.79 9.96 <0.0001
qNPB12 12 RM247 -1.07 8.14 0.0049
二次枝梗数 qNSB2 2 RM6378 2.33 1.65 0.0004
Number of secondary branch qNSB3 3 RM3766 3.86 7.83 0.0005
qNSB5 5 RM18067 3.59 5.92 0.0036 JMJ703[23]
qNSB6 6 RM494 -2.46 7.10 0.0004
qNSB-9-1 9 RM7048 -7.39 20.71 0.0007
qNSB-9-2 9 RM24537 6.29 6.05 0.0001
实粒数 qGPP2 2 RM1385 8.89 4.53 0.0014
Grain number per panicle qGPP-9-1 9 RM7048 -28.08 19.83 0.0008
qGPP-9-2 9 RM24537 18.49 3.66 0.0038
qGPP12 12 RM3331 -18.64 8.21 <0.0001 ND1[24]
总粒数 qSPP3 3 RM3766 20.73 9.66 0.0002
Spikelet number per panicle qSPP5 5 RM18067 20.07 7.90 0.0015
qSPP9 9 RM7048 -29.51 14.15 0.0044
结实率 qSSR1 1 RM259 -24.38 11.97 0.0001 DFO1[25]
Seed setting rate qSSR2 2 RM1385 4.65 1.19 0.0069
qSSR-3-1 3 RM5474 18.66 9.82 <0.0001 OsMCA1[26]
qSSR-3-2 3 RM3766 -10.38 3.58 0.0014 OsFRDL1[27]
qSSR5 5 RM5874 42.72 46.67 <0.0001 PTB1[28]
qSSR6 6 RM5371 -17.59 6.48 0.0013 DCM1[29]
qSSR-9-1 9 RM7048 -20.74 10.33 0.0004
qSSR-9-2 9 RM24537 23.28 5.24 <0.0001
qSSR12 12 RM3331 -14.58 4.80 <0.0001
粒长 qGL3 3 RM6266 0.40 63.73 <0.0001
Grain length qGL5 5 RM18067 0.24 9.29 0.0007
qGL12 12 RM3331 0.16 3.21 0.0047
粒宽 qGW2 2 RM1385 -0.07 5.59 0.0080 OsVPE3[30]
Grain width qGW5 5 RM18148 -0.08 6.05 0.0029
长宽比 qRLW2 2 RM1385 0.08 5.35 0.0004
Rate of length to width qRLW-3-1 3 RM3766 0.10 5.42 0.0047
qRLW-3-2 3 RM6266 0.13 19.74 <0.0001
qRLW5 5 RM18148 0.13 10.17 0.0002
qRLW6 6 RM494 -0.09 10.31 <0.0001
qRLW12 12 RM3331 0.15 7.70 <0.0001
千粒重 qGWT2 2 RM1385 -0.80 4.01 0.0048 OsVPE3[30]
1000-kernel weight qGWT3 3 RM6266 1.82 28.67 <0.0001
[1] Kotla A, Agarwal S, Yadavalli V R, Vishnu P V, Dhavala V N C, Neelamraju S . Quantitative trait loci and candidate genes for yield and related traits in Madhukar × Swarna RIL population of rice. J Crop Sci Biotechnol, 2013,16:35-44.
doi: 10.1007/s12892-012-0093-z
[2] 郭泽西, 马海燕, 马亚飞, 袁雪 . 水稻穗粒数遗传基础研究进展. 天津农业科学, 2017,23(7):94-98.
Guo Z X, Ma H Y, Ma Y F, Yuan X . Basal research progresses on the genetics of grains number per panicle in rice. J Tianjin Agric Sci, 2017,23(7):94-98 (in Chinese with English abstract).
[3] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M . Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[4] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X . The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016,12:e1006386.
doi: 10.1371/journal.pgen.1006386 pmid: 27764111
[5] Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shang-Guan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A H, Wang Z Q, Sang T, Wang Z X, Han B . An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25:3360-3376.
doi: 10.1105/tpc.113.113589
[6] Gao F, Wang K, Liu Y, Chen Y P, Chen P, Shi Z Y, Luo J, Jiang D Q, Fan F F, Zhu Y G, Li S Q . Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants, 2015,2:15196.
doi: 10.1038/nplants.2015.196 pmid: 27250748
[7] Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q . PAY1 improves plant architecture and enhances grain yield in rice. Plant J, 2015,83:528-536.
doi: 10.1111/tpj.12905 pmid: 26095647
[8] Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q . NOG1 increases grain production in rice. Nat Commun, 2017,8:1497.
doi: 10.1038/s41467-017-01501-8 pmid: 29133783
[9] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X . GRAIN SIZE AND NUMBER 1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018,30:871-888.
doi: 10.1105/tpc.17.00959 pmid: 29588389
[10] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F . Natural variation inGhd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147
[11] Sheng P K, Wu F Q, Tan J J, Zhang H, Ma W W, Chen L P, Wang J C, Wang J, Zhu S S, Guo X P, Wang J L, Zhang X, Cheng Z J, Bao Y Q, Wu C Y, Liu X M, Wan J M . A CONSTANS-like transcriptional activator,OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Mol Biol, 2016,92:209-222.
doi: 10.1007/s11103-016-0506-3 pmid: 27405463
[12] Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N . Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics, 2010,10:339-347.
doi: 10.1007/s10142-010-0167-2 pmid: 20376514
[13] Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F . Fine mapping of a major quantitative trait loci,qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet, 2008,116:789-796.
doi: 10.1007/s00122-008-0711-9
[14] Liu T M, Mao D H, Zhang S P, Xu C G, Xing Y Z . Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice(Oryza sativa). Theor Appl Genet, 2009,118:1509-1517.
doi: 10.1007/s00122-009-0999-0
[15] Ren D Y, Xu Q K, Qiu Z N, Cui Y J, Zhou T T, Zeng D L, Guo L B, Qian Q . FON4 prevents the multi-floret spikelet in rice. Plant Biotechnol J, 2019,17:1007-1009.
doi: 10.1111/pbi.13083 pmid: 30677211
[16] Zhang T, Li Y F, Ma L, Sang X C, Ling Y H, Wang Y T, Yu P, Zhuang H, Huang J Y, Wang N, Zhao F M, Zhang C W, Yang Z L, Fang L K, He G H . LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc Natl Acad Sci USA, 2017,114:9984-9989.
doi: 10.1073/pnas.1700504114 pmid: 28847935
[17] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华 . 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016,38(11):1-7.
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H . Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn) , 2016,38(11):1-7 (in Chinese with English abstract).
[18] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明 . 水稻高秆染色体片段代换系Z1377 的鉴定及重要农艺性状QTL 定位. 作物学报, 2018,44:1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M . Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract).
[19] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D . Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991,127:181-197.
pmid: 1673106
[20] Wang J, Wu G W, Peng C F, Zhou X G, Li W T, He M, Wang J C, Yin J J, Yuan C, Ma W W, Ma B T, Wang Y P, Chen W L, Qin P, Li S G, Chen X W . The receptor-like cytoplasmic kinase OsRLCK102 regulatesXA21-mediated immunity and plant development in rice. Plant Mol Biol Rep, 2016,34:628-637.
doi: 10.1111/tpj.14093 pmid: 30222251
[21] Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X . Identification and characterization ofHTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009,230:649-658.
doi: 10.1007/s00425-009-0975-6
[22] Li C B, Zhou A L, Sang T . Genetic analysis of rice domestication syndrome with the wild annual species,Oryza nivara. New Phytol, 2006,170:185-193.
doi: 10.1111/j.1469-8137.2005.01647.x pmid: 16539615
[23] Cui X K, Jin P, Cui X, Gu L F, Lu Z K, Xue Y M, Wei L Y, Qi J F, Song X W, Luo M, An G, Cao X F . Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci USA, 2013,110:1953-1958.
doi: 10.1073/pnas.1217020110 pmid: 23319643
[24] Luan W J, Liu Y Q, Zhang F X, Song Y L, Wang Z Y, Peng Y K, Sun Z X . OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J, 2011,9:513-524.
doi: 10.1111/j.1467-7652.2010.00570.x
[25] Yan D W, Zhang X M, Zhang L, Ye S H, Zeng L J, Liu J Y, Li Q, He Z H . CURVWD CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Plant J, 2015,82:12-24.
doi: 10.1111/tpj.12784 pmid: 25647350
[26] Liu Z W, Cheng Q, Sun Y F, Dai H X, Song G Y, Guo Z B, Qu X F, Jiang D M, Liu C, Wang W, Yang D C . A SNP inOsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. Plant Mol Biol, 2015,87:17-30.
doi: 10.1007/s11103-014-0257-y pmid: 25307286
[27] Yokosho K, Yamaji N, Ma J F . OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot, 2016,67:5485-5494.
doi: 10.1093/jxb/erw314 pmid: 27555544
[28] Li S C, Li W B, Huang B, Cao X M, Zhou X Y, Ye S M, Li C B, Gao F Y, Zou T, Xie K L, Ren Y, Ai P, Tang Y F, Li X M, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P . Natural variation inPTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013,4:2793.
doi: 10.1038/ncomms3793 pmid: 24240868
[29] Zhang C, Shen Y, Tang D, Shi W Q, Zhang D M, Du G J, Zhou Y H, Liang G H, Li Y F, Cheng Z K . The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet, 2018,14:e1007769.
doi: 10.1371/journal.pgen.1007769 pmid: 30419020
[30] Lu W Y, Deng M J, Guo F, Wang M Q, Zeng Z H, Han N, Yang Y N, Zhu M Y, Bian H W . Suppression ofOsVPE3 enhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice, 2016,9:65.
doi: 10.1186/s12284-016-0138-x pmid: 27900724
[31] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z . Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016,44:370-380.
doi: 10.1556/0806.44.2016.022
[32] 徐建军, 梁国华 . 水稻染色体片段代换系群体的构建及应用研究进展. 安徽农业科学, 2011,39:1935-1938.
Xu J J, Liang G H . Research progress of construction and application of rice ( Oryza stativa L.) chromosome segment substitution lines. J Anhui Agric Sci, 2011,39:1935-1938 (in Chinese with English abstract).
[33] Wang M, Zhang T, Peng H, Luo S, Tan J J, Jiang K F, Heng Y Q, Zhang X, Guo X P, Zheng J K, Cheng Z J . RicePremature Leaf Senescence 2, encoding a glycosyltransferase (GT), is involved in leaf senescence. Front Plant Sci, 2018,9:560.
doi: 10.3389/fpls.2018.00560 pmid: 29755498
[34] Marri P R, Sarla N, Reddy L V, Siddiq E A . Identification and mapping of yield and yield related QTLs from an Indian accession ofOryza rufipogon. BMC Genet, 2005,6:1-14.
doi: 10.1186/1471-2156-6-1
[35] Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y . RiceSIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol, 2011,189:869-882.
doi: 10.1111/j.1469-8137.2010.03538.x pmid: 21083564
[36] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043.
doi: 10.1038/nplants.2017.43 pmid: 28394310
[37] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D . Natural variation at theDEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
doi: 10.1038/ng.352 pmid: 19305410
[38] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X . The novel quantitative trait locusGL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!