欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1115-1120.doi: 10.3724/SP.J.1006.2012.01115

• 研究简报 • 上一篇    下一篇

逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系

周玲艳1,2,姜大刚2,李静2,周海2,曹伟炜2,庄楚雄2,*   

  1. 1仲恺农业工程学院生命科学学院, 广东广州510225; 2华南农业大学生命科学学院, 广东广州510642
  • 收稿日期:2011-12-06 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 庄楚雄, E-mail: zhuangcx@scau.edu.cn, Tel: 020-85288399
  • 基金资助:

    本研究由广东省自然科学基金项目(S2011040001653)资助。

Effect of Stresses on Leaf Cuticular Wax Accumulation and Its Relationship to Expression of OsGL1-Homologous Genes in Rice

ZHOU Ling-Yan1,2,JIANG Da-Gang2,LI Jing2,ZHOU Hai2,CAO Wei-Wei2,ZHUANG Chu-Xiong2,*   

  1. 1 College of Life Science, Zhongkai Agriculture and Engineering University, Guangzhou 510225, China; 2 College of Life Science, South China Agriculture University, Guangzhou 510642, China?
  • Received:2011-12-06 Revised:2012-02-22 Published:2012-06-12 Published online:2012-04-06
  • Contact: 庄楚雄, E-mail: zhuangcx@scau.edu.cn, Tel: 020-85288399

摘要: 植物角质层蜡质在抵抗各种生物和非生物胁迫中起着非常重要的作用。本试验以水稻(Oryza sativa L.)幼苗为材料, 分别以200 mmol L-1 NaCl、12% PEG、1.0% H2O2、40℃高温和8℃低温为逆境, 研究叶角质层蜡质的积累情况以及其与水稻蜡质合成相关基因OsGL1表达的关系。扫描电镜观察以及叶角质层蜡质总量测定结果表明, 12% PEG、1.0% H2O2和8℃低温处理下水稻幼苗叶角质层蜡质的积累明显增加, 而200 mmol L-1 NaCl和40℃高温处理下叶角质层蜡质覆盖量略有下降。RT-PCR分析显示, 逆境处理下水稻蜡质合成相关基因OsGL1的表达量变化与水稻幼苗叶角质层蜡质的积累存在相关性。

关键词: 水稻, 逆境处理, 角质层蜡质, OsGL1, 表达

Abstract: The outermost surfaces of land plants are covered with a cuticular wax layer which plays a very critical role in defense against biotic and abiotic stresses. GLOSSY1 (GL1) is a wax biosynthesis related gene and OsGL1 is a homologous gene of GL1. In this study, we discussed the leaf cuticular wax accumulation and the relationship between the leaf cuticular wax accumulation and the expression of OsGL1 in rice treated with stresses, including 200 mmol L-1 NaCl, 12% PEG, 1.0% H2O2, high temperature and low temperature in their seedling stages. The scanning electron microscopy and the cuticular wax content analysis showed that the cuticular wax accumulation on leaves significantly increased under 12% PEG, 1.0% H2O2 and low temperature treatments. However, the cuticular wax accumulation on leaves declined slightly under NaCl and high temperature treatments. Results of RT-PCR analysis suggested that the expression of OsGL1 under stresses was associated with the accumulation of cuticular wax on leaves.

Key words: Oryza sativa L., Stress treatments, Cuticular wax, OsGL1, Expression

[1]Riedererm, Schneider G. The effect of environment on the permeability and composition of citrus leaf cuticles. Planta, 1990, 180: 154-165

[2]Jenks M A, Joly R J, Peters P J, Rich P J, Axtell J D, Ashworth E N. Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor L. Moench. Plant Physiol, 1994, 105: 239-1245

[3]Kolattukudy P E. Biosynthetic pathways of cutin and waxes and their sensitivity to environmental stresses. In: Kerstiens G ed. Plant Cuticles: an Integrated Functional Approach. Oxford, UK: Bios Scientific Publishers, 2006. pp 83-108

[4]Krauss P, Markstadter C, Riederer M. Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ, 1997, 20: 1079-1085

[5]Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Métraux J P, Nawrath C. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusion. Plant Cell, 2000, 12: 721-737

[6]Bondada B R, Oosterhuis D M, Murph J B, Kim K S. Effect of water stress on the epicuticular wax composition and ultrastructure of cotton(Gossypium hirsutum L.) leaf, bract, and boll. Env Exp Bot, 1996, 36: 61-69

[7]Jenks M A, Andersen L, Teusink R S, Williams M H. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Plant Physiol, 2001, 112: 62-70

[8]Samdur M Y, Manivel P, Jain V B, Chikani B M, Gor H K, Desai S, Misra J B. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Sci, 2003, 43: 1294-1299

[9]Sanchez F J, Manzanares M, de Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron, 2001, 15: 57-70

[10]Kim K, Park S, Jenks M A. Influence of water deficit on leaf cuticular waxes of soybean. Int J Plant Sci, 2007, 168: 307-316

[11]Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol, 2007, 164: 1134-1143

[12]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140: 176-183

[13]Kosma D K, Bourdenx B, Bernard A L, Parsons E P, Lu S Y, Joube J M, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918-1929

[14]Williams M H, Rosenqvist E, Buchhave M R. Response of potted miniature roses (Rosa 3 hybrida) to reduced water availability during production. J Hortic Sci Biotechnol, 1999, 74: 301-308

[15]Williams M H, Rosenqvist E, Buchhave M R. The effect of reducing production water availability on the post-production quality of potted miniature roses (Rosa 3 hybrida). Postharvest Biol Technol, 2000, 18: 143-150

[16]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140: 176-183

[17]Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29-45

[18]Islam M A, Du H, Ning J, Ye H Y, Xiong L Z. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70: 443-456

[19]Jefferson P, Johnson D, Rumbaugh M, Asay K. Water stress and genotypic effects on epicuticular wax production of alfalfa and crested wheatgrass in relation to yield and excised leaf water loss rate. Can J Plant Sci, 1989, 69: 481-490

[20]Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y. Over-expression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42: 689-707

[21]Zhang J Y, Broeckling C D, Sumner L W, Wang Z Y. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 2007, 64: 265-278

[22]Kosma D K, Jenks M A. Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Dordrecht, Netherlands. 2007. pp 91-120

[23]Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 2003, 42: 51-80

[24]Kunst L, Samuels L. Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol, 2009, 12: 721-727

[25]Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W, Hwang I, An G. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell, 2006, 18: 3015-3032

[26]Qin B X,Tang D, Huang J, Li M, Wu X R, Lu L L, Wang K J, Yu H X, Chen J M, Gu M H, Cheng Z K. Rice OsGL1-1 is involved in leaf cuticularwax and cuticle membrane. Mol Plant, 2011, 4: 985-995

[27]Mao B G, Cheng Z J, Lei C L, Xu F H, Gao S W, Ren Y L, Wang J L, Zhang X, Wang J, Wu F Q, Guo X P, Liu X L, Wu C Y, Wang H Y, Wan Y M. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta, 2011, doi: 10.1007/s00425-011-1481-1

[28]Mills D, Zhang G, Benzioni A. Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. J Plant Physiol, 2001, 158: 1031-1039

[29]Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M. Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol, 2005, 138: 478-489

[30]Aarts M G, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7: 2115-2127

[31]Chen X, Goodwin S M, Boroff V L, Liu X, Jenks M A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003, 15: 1170-1185

[32]Zhou X-Y(周小云), Chen X-B(陈信波), Xu X-L(徐向丽), Liu A-L(刘爱玲), Zou J(邹杰), Gao G-F(高国赋). On comparison of extraction methods of epicuticular wax and content of rice leaves. J Hunan Agric Univ (Nat Sci)(湖南农业大学学报?自然科学版), 2007, 33(3): 273-276 (in Chinese with English abstract)

[33]Li J, Jiang D G, Zhou H, Li F, Yang J W, Hong L F, Fu X A, Li Z B, Liu Z L, Li J M, Zhuang C X. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice. PLoS One, 2011, 6: e17444

[34]Jenks M A, Eigenbrode S D, Lemieux B. Cuticular waxes of Arabidopsis. In: Somerville C R, Meyerowitz E M, eds. The Arabidopsis book. American Society of Plant Biologists, Rockville M D, 2002

[35]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781-803

[36]Prasad T K, Anderson M P, Martin B A. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65-74

[37]Dai G-X(戴高兴), Peng K-Q(彭克勤), Xiao L-T(萧浪涛), Deng G-F(邓国富). Effect of drought stress simulated by PEG on malonaldehyde, proline contents and superoxide dismutase activity in low potassium tolerant rice seedlings. Chin J Rice Sci (中国水稻科学), 2006, 20(5): 557-559 (in Chinese with English abstract)

[38]Baker E A. The influence of environment on leaf wax development in Brassica olerace avar. gemmiferat. New Phytol, 1974, 73: 955-966

[39]Shepherd T, Griffiths D W. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171: 469-499

[40]Park J J, Jin P, Yoon J, Yang J I, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91-103

[41]Kosma D K, Nemacheck J A, Jenks M A, Williams C E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J, 2010, 63: 31-43

[42]Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231: 1089-1100

[43]Shepherd T, Robertson G W, Griffiths D W, A Bircht N E, Ducan G. Effects of environment on the composition of epicuticular wax from kale and swede. Phytochem, 1995, 40: 407-417

[44]Gao G-F(高国赋), Zou J(邹杰), Zhou X-Y(周小云), Liu A-L(刘爱玲), Wei B-Y(魏宝阳), Chen X-B(陈信波). Tissue speciality and stress responses in expression of three WAX2 homologous genes in rice. Acta Agron Sin (作物学报), 2010, 36(8): 1336-1341 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[10] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[11] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[12] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[13] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[14] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[15] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!