欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 908-919.doi: 10.3724/SP.J.1006.2022.14034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于高基元SSR构建黍稷种质资源的分子身份证

陈小红1(), 林元香1, 王倩1, 丁敏1, 王海岗2, 陈凌2, 高志军3, 王瑞云1,2,*(), 乔治军2,*()   

  1. 1山西农业大学农学院, 山西太谷 030801
    2山西农业大学农业基因资源研究中心 / 农业农村部黄土高原作物基因资源与种质创制重点实验室 / 杂粮种质资源发掘与遗传改良山西省重点实验室, 山西太原 030031
    3内蒙古鄂尔多斯市农牧业科学研究院, 内蒙古鄂尔多斯 017000
  • 收稿日期:2021-02-22 接受日期:2021-06-16 出版日期:2022-04-12 网络出版日期:2021-07-12
  • 通讯作者: 王瑞云,乔治军
  • 作者简介:陈小红, E-mail: 13466897634@163.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-06-13-13.5-A16);国家自然科学基金项目(31271791);国家留学基金(2019)项目(75-201908140133);山西省自然科学基金项目(201901D11126);山西省重点研发计划(一般项目) (农业)(201803D221008-5);山西省研究生教育创新项目资助(2020SY213)

Development of DNA molecular ID card in hog millet germplasm based on high motif SSR

CHEN Xiao-Hong1(), LIN Yuan-Xiang1, WANG Qian1, DING Min1, WANG Hai-Gang2, CHEN Ling2, GAO Zhi-Jun3, WANG Rui-Yun1,2,*(), QIAO Zhi-Jun2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs / Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, Shanxi, China
    3Ordos Institute of Agriculture and Animal Husbandry, Ordos 017000, Inner Mongolia, China
  • Received:2021-02-22 Accepted:2021-06-16 Published:2022-04-12 Published online:2021-07-12
  • Contact: WANG Rui-Yun,QIAO Zhi-Jun
  • Supported by:
    China Agriculture Research System(CARS-06-13-13.5-A16);National Natural Science Foundation of China(31271791);National Scholarship Fund Program (2019)(75-201908140133);Natural Science Foundation of Shanxi Province(201901D11126);Key Research and Development Program of Shanxi Province (General Project) (Agriculture)(201803D221008-5);Postgraduate Education Innovation Project in Shanxi Province(2020SY213)

摘要:

为快速鉴定黍稷(Panicum miliaceum)资源, 建立大数据管理平台, 为种质身份标识和溯源管理提供理论依据。本研究以来源于4个生态栽培区的130份资源为材料, 基于35个高基元SSR (四、五和六碱基重复各21、10和4个)构建分子身份证。结果表明, 35个标记中有30个扩增条带稳定, 可用于分子身份证构建。30个标记共检出等位变异(Na) 90个, 平均为30个; 有效等位变异(Ne)为2.3186~2.9982, 平均为2.7607; Shannon多样性指数(I)为0.9158~1.0873, 平均为1.0472; Nei’s基因多样性指数(Nei)为0.5687~0.6665, 平均为0.6360; 多态性信息含量(PIC)为0.5151~0.7898, 平均为0.6966; 观测杂合度(Ho)为0.5000~ -0.8678, 平均为0.7168; 期望观测杂合度(He)为0.5710~0.6691, 平均为0.6386。基于UPGMA聚类将材料划为3个类群(I、II、III), 就山西省材料而言, 地方品种和育成品种分别划归类群I和III, 农家种在3个类群中均有分布。主成分分析将试材归为4类, 聚类结果与其地理来源一致。基于最少标记区分最多种质的原则, 剔除相似系数高的3个标记(RYW23、RYW49和RYW51), 筛选其余27个标记, 发现仅用17个标记组合(RYW35、RYW40、RYW37、RYW18、RYW30、RYW16、RYW20、RYW19、RYW8、RYW5、RYW3、RYW7、RYW1、RYW14、RYW9、RYW6和RYW10)可将全部材料区分。用ID Analysis 4.0、在线条形码生成器和二维码技术(http://barcode.cnaidc.com/app/html/bcgcode128.phphttps://cli.im/)构建了130份资源的字符串、条形码和二维码DNA分子身份证。

关键词: 黍稷, 高基元SSR, 分子身份证, 种质资源

Abstract:

In order to identify hog millet (Panicum miliaceum) germplasm rapidly, to establish a big data management platform, to provide a theoretical basis for germplasm identification and traceability management, 130 germplasms from four ecological cultivation areas were used as materials to construct a molecular ID based on 35 high-motif SSRs (21, 10, and 4 with four-, five-, and six-nucleotide repeats, respectively). The results showed that 30 out of the 35 SSRs could be used as core markers for the construction of molecular ID cards. Ninety allelic variants were detected; effective allelic variants (Ne) ranged from 2.3186 to 2.9982 with an average of 2.7607; Shannon diversity index (I) ranged from 0.9158 to 1.0873 with an average of 1.0472. The observed heterozygosity (Ho) was 0.5000-0.8678 with a mean of 0.7168; the expected observed heterozygosity (He) was 0.5710-0.6691 with a mean of 0.6386; the Nei’s gene diversity index (Nei) was 0.5687-0.6665 with a mean of 0.6360; the polymorphism information content (PIC) was 0.5151-0.7898, with a mean of 0.6966. All accessions were divided into three groups (Group I, II, and III) according to UPGMA analysis. In terms of Shanxi accessions, landraces and breeding varieties were classified into Group I and III, respectively, and farmers materials were distributed into three groups. Based on PCA analysis, all accessions were classified into four clusters, which were related to their geographical origin. As for the rule that the most germplasms were determined using the least markers, 3 markers were excluded due to their high similarity coefficient with others, namely RYW23, RYW49, and RYW51. Screening the remaining 27 markers, the combinations of 17 SSR (RYW35, RYW40, RYW37, RYW18, RYW30, RYW16, RYW20, RYW19, RYW8, RYW5, RYW3, RYW7, RYW1, RYW14, RYW9, RYW6, and RYW10) could identify all hog millet accessions. The DNA molecular identifications of character strings, bar code, and quick response (QR) codes were constructed via ID analysis 4.0, software online of bar code and QR codes technique (http://barcode.cnaidc.com/app/html/bcgcode128.php and https://cli.im/).

Key words: hog millet (Panicum miliaceum), SSR with high motif, molecular identity card, germplasm resources

表1

黍稷资源生态区分布"

生态区 Ecotope area 来源 Origin 数量 Accession number
黄土高原春夏糜子区LPSS
Loess Plateau Spring & Summer Sowing Hog Millet Ecotope
山西 Shanxi, China
宁夏 Ningxia, China
河北 Hebei, China
甘肃 Gansu, China
青海 Qinghai, China
陕西 Shaanxi, China
83
3
1
2
1
2
北方春糜子区 NCSP
Northern China Spring Sowing Hog Millet Ecotope
山西 Shanxi, China
陕西 Shaanxi, China
内蒙古 Inner Mongolia, China
甘肃 Gansu, China
宁夏 Ningxia, China
22
2
4
4
1
华北夏糜子区 NCSU
North China Summer Sowing Hog Millet Ecotope
河南 Henan, China
河北 Hebei, China
1
2
东北春糜子区 NECS
Northeast China Spring Sowing Hog Millet Ecotope
内蒙古 Inner Mongolia, China
辽宁 Liaoning, China
1
1
合计 Total 130

表2

6份糜子试材明细表"

编号
Serial number
生态区
Ecotope
统一编号
Unicode
名称
Name
原产地
Origin
备注
Remark
1 NCSP 00000832 鸭爪白
Yazhuabai
山西大同市
Datong, Shanxi, China
地方品种
Landrace
2 NCSP 00001637 糜子
Meizi
陕西榆林市
Yulin, Shaanxi, China
地方品种
Landrace
3 NCSP 00002250 临河黄糜子
Linhehuangmeizi
内蒙古临河市
Linhe, Inner Mongolia, China
地方品种
Landrace
4 LPSS 00006780 黑城小黑糜
Heichengxiaoheimei
宁夏固原市
Guyuan, Ningxia, China
地方品种
Landrace
5 NCSP 00006573 宁朔紫秆小红糜
Ningshuoziganxiaohongmei
甘肃
Gansu, China
地方品种
Landrace
6 NCSU 00007118 糜子
Meizi
河北省承德市
Chengde, Hebei, China
地方品种
Landrace

表3

SSR引物序列及退火温度"

位点
Locus
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
退火温度
Tm (℃)
重复基序
Repeated motif
RYW1 TAACGCTTCACCTTCAGACC TGAGATGGAGTTGGCTGATG 55.7 (TCATCT)6
RYW2 TTAGGGCTCTCCTGCATCC CAGCGAGTTCACCGTCAAG 57.2 (CGAAGC)5
RYW3 GGAGGCGTGACAATAAAAC GGCGTGAGGTGTTGTTTTT 54.3 (CCTTCC)5
RYW4 AATCCACAACGCACACGAC ATTTGCTCCTCTCGTCGGT 56.9 (GTGCCG)5
RYW5 GACGATGCTCTTGACCTTGT CACCGTGAAATGTCTCTGCT 55.2 (CCTTT)5
RYW6 AGCCGATTTGCTGTGGAGT CTGCCTCCGATGAGTTGGT 57.1 (ACACC)5
RYW7 TCCACTCATCCATTGCTCGT GATGGATTCAAAGGGACGCT 58.7 (CGCGC)5
RYW8 GGGTCAGAGAATACACAGCG GTAGGGAAGGAGAAGTGGGT 55.7 (AATAG)5
RYW9 GGACCCTTCCCTCACAGATT TCCAGTTGCTCTTGCCGTT 58.3 (CTAG)6
RYW10 TGGATTGGGTGGTGGTAT AAGGACGGCAGCACAAAT 53.0 (CGAG)5
RYW14 CGCACAACGACCACAAGAG ATACACCAGAGGAGCACGC 56.7 (GGCC)5
RYW16 ATCTCCTCCGCCTTCTAACCC TGGCAATGGTCGTACAAACT 58.4 (GAGC)5
RYW18 CTCCCTCTTTGTCCTCGTT GCTGCCTCTTCGCTATCTT 54.3 (AGTT)6
RYW19 GAATGATAGGTCCGCAAGG CAGCCTTTGTTCAGTTGTCTC 55.1 (TTAT)5
RYW20 ACCTCTTGCCGCACACTAC TTCTACATCCCCGAACCAC 55.4 (TTGG)6
RYW21 CCCTCCTACTGCTCCCTTT ATTACTCGTTCTCGCCTCG 55.6 (CGGA)6
RYW23 AGGAACAGCAGAGAGAGGG CAGAACACCACGAAACACC 53.7 (GGAA)5
RYW26 TAAGGGTGGCGTTGGATAG AACCCAACAGGTCCTCCAT 56.1 (AGGA)6
RYW28 CCAAGGCTGAGCAGAAAGAT ACAAGGTGAAACCCGAAGC 57.2 (AGGC)5
RYW29 CTTGATTTCTCACGCACCG TGTCCAGCAGTAGTCGTTCCT 57.2 (GCAG)5
RYW30 TAGCCTTCTTTGCCACCACT GCCCGTGATGATATTCGAC 56.6 (TTTC)5
RYW31 ACCCAGAGTCCAGAGAAGC GATGTCCTCCTCCTTCTCC 53.0 (AGCG)5
RYW32 CAGGTTATGGGAGGACGAG GGTGCTACGGTTACAGGGT 54.9 (ATCTT)5
RYW33 CGATTCTACACCGACGAGG TGTAGGGTTCCATTCATCTCC 54.6 (CCATC)5
RYW34 TCCCCCGATTAGGAAAGAT CTGGTGAGGTGATGAAGCC 55.8 (CGATT)5
RYW35 ATTAGCATCCCCCTCCAC ATCCGCTTTCCCAACCAC 54.7 (CGTGC)5
RYW36 TATTGTCCTTCCGCTCCC ATGACTACTCTCCCCCCCT 55.0 (GGCTT)5
RYW37 CATTCCGTTCCTTGTCTTCC CAGTCTCACTCCTGCGATGT 55.3 (GCGAT)5
RYW39 GTTGGGCGAGGTCAATCTG TAGGGAGCCGAAGCAGAAG 58.2 (TCCT)5
RYW40 TGCTCTTCGGCTCTTCTCC ATCAGCTCATCGTGACCCC 57.6 (CAGC)6
RYW43 GGAGATGCTTGCTTGGTTG CAGGAATCGCAAGGAACAG 56.2 (GGAG)5
RYW47 TTGTTTTTGCTGCTGCCTC TGCTGGACTTCTTTTTGCC 56.7 (GCCT)5
RYW49 GCTAAATCCGCTGATGAGGT TGTATGTTGCTCCAGCCTTG 57.0 (TATC)6
RYW50 CAAGGCAGATAGGGCAAGT TCGTCTGCTGCTGGTTTGT 56.1 (GGAG)5
RYW51 TATCGCCGCACCTTACAAC TGAGCCTGCTTCCATCTTG 56.8 (CTGC)5

图1

标记RYW37的扩增图谱"

表4

30个SSR的遗传多样性参数"

引物
Locus
观测等位变异
Na
有效等位变异
Ne
Shannon多样性指数 I 观测杂合度
Ho
期望杂合度
He
Nei’s基因多样性指数
Nei
多态性信息含量
PIC
RYW1 3.0000 2.9844 1.0960 0.6614 0.6675 0.6649 0.6635
RYW3 3.0000 2.9982 1.0983 0.6160 0.6691 0.6665 0.7839
RYW5 3.0000 2.9587 1.0917 0.7520 0.6647 0.6620 0.7306
RYW6 3.0000 2.8314 1.0677 0.7059 0.6495 0.6468 0.7451
RYW7 3.0000 2.5901 1.0140 0.7049 0.6164 0.6139 0.7009
RYW8 3.0000 2.9753 1.0944 0.7155 0.6668 0.6639 0.7870
RYW9 3.0000 2.8813 1.0780 0.7661 0.6556 0.6529 0.7372
RYW10 3.0000 2.5276 0.9892 0.7227 0.6069 0.6044 0.6913
RYW14 3.0000 2.8069 1.0613 0.7258 0.6463 0.6437 0.7370
RYW16 3.0000 2.9801 1.0952 0.6239 0.6673 0.6644 0.7775
RYW18 3.0000 2.9499 1.0899 0.5391 0.6636 0.6610 0.8043
RYW19 3.0000 2.9132 1.0830 0.6218 0.6595 0.6567 0.7999
RYW20 3.0000 2.8143 1.0655 0.6822 0.6472 0.6447 0.7056
RYW21 3.0000 2.5147 0.9878 0.7680 0.6048 0.6023 0.5907
RYW23 3.0000 2.5244 0.9886 0.8537 0.6063 0.6039 0.5886
RYW26 3.0000 2.3186 0.9158 0.6829 0.5710 0.5687 0.6302
RYW28 3.0000 2.5846 1.0193 0.5000 0.6155 0.6131 0.7735
RYW29 3.0000 2.6400 1.0228 0.7578 0.6237 0.6212 0.6209
引物
Locus
观测等位变异
Na
有效等位变异
Ne
Shannon多样性指数 I 观测杂合度
Ho
期望杂合度
He
Nei’s基因多样性指数
Nei
多态性信息含量
PIC
RYW30 3.0000 2.9599 1.0918 0.6198 0.6649 0.6621 0.7898
RYW31 3.0000 2.6094 1.0166 0.6532 0.6193 0.6168 0.7237
RYW33 3.0000 2.7255 1.0428 0.7949 0.6358 0.6331 0.6856
RYW35 3.0000 2.9496 1.0902 0.7179 0.6638 0.6610 0.7457
RYW37 3.0000 2.9802 1.0952 0.8374 0.6672 0.6645 0.7301
RYW39 3.0000 2.7768 1.0548 0.6880 0.6424 0.6399 0.6999
RYW40 3.0000 2.8700 1.0757 0.7458 0.6543 0.6516 0.7362
RYW43 3.0000 2.6909 1.0343 0.8678 0.6310 0.6284 0.6592
RYW32 3.0000 2.6620 1.0270 0.8661 0.6268 0.6243 0.5473
RYW47 3.0000 2.6426 1.0256 0.7812 0.6240 0.6216 0.6584
RYW50 3.0000 2.4418 0.9614 0.7563 0.5930 0.5905 0.5151
RYW51 3.0000 2.7418 1.0413 0.7752 0.6347 0.6322 0.5401
Mean 3.0000 2.7607 1.0472 0.7168 0.6386 0.6360 0.6966

图2

130份黍稷种质资源聚类图"

图3

130份黍稷资源遗传多样性的主成分分析"

图4

92份黄土高原春夏糜子区黍稷材料条形码(附字符串)和二维码DNA分子身份证 A: 条形码(附字符串)DNA分子身份证; B: 二维码DNA分子身份证。"

[1] Ventura F, Vignudelli M, Poggi G M, Negri L, Dinelli G. Phenological stages of proso millet (Panicum miliaceum L.) encoded in BBCH scale. Int J Biometeorol, 2020, 64:1167-1181.
doi: 10.1007/s00484-020-01891-3
[2] 王星玉, 王纶. 黍稷种质资源描述规范和黍稷标准. 北京: 中国农业出版社, 2006. pp 5-15.
Wang X Y, Wang L. Descriptor and Data Standard for Broomcorn Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2006. pp 5-15(in Chinese).
[3] Barton L, Newsome S D, Chen F H, Wang H, Guilderson T P, Bettinger R L. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA, 2009, 106:5523-5528.
doi: 10.1073/pnas.0809960106
[4] Crawford G W. Agricultural origins in North China pushed back to the Pleistocene-Holocene boundary. Proc Natl Acad Sci USA, 2009, 10:7271-7272.
[5] Na X, Cao X, Ma C, Ma S, Xu P, Liu S, Wang J, Wang H, Chen L, Qiao Z. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front Microbiol, 2019, 24:828.
[6] Yang Q, Zhang P, Qu Y, Gao X, Liang J, Yang P, Feng B. Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet (Panicum miliaceum L.). Food Chem, 2018, 257:271-278.
doi: 10.1016/j.foodchem.2018.03.009
[7] Yue H, Wang M, Liu S, Du X, Song W, Nie X. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in broomcorn millet (Panicum miliaceum L.). BMC Genomics, 2016, 17:343.
doi: 10.1186/s12864-016-2677-3
[8] Shi J, Ma X, Zhang J, Zhou Y, Liu M, Huang L, Sun S, Zhang X, Gao X, Zhan W, Li P, Wang L, Lu P, Zhao H, Song W, Lai J. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat Commun, 2019, 10:464.
doi: 10.1038/s41467-018-07876-6
[9] 王瑞云. 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017. pp 2-3.
Wang R Y. Genetic Diversity and Evolution Advancement in Common Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017. pp 2-3(in Chinese).
[10] 陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44:2081-2093.
Chen C W, Cao K, Wang L R, Zhu G R, Fang W C. Molecular ID establishment of main China peach varieties and peach related species. Sci Agric Sin, 2011, 44:2081-2093 (in Chinese with English abstract).
[11] Wang R Y, Hunt H V, Qiao Z J, Wang L, Han Y H. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: a review. Econ Bot, 2016, 70:332-342.
doi: 10.1007/s12231-016-9357-8
[12] Li K, Zhang T Z, Narayanamoorthy S, Jin C, Sui Z, Li Z, Li S, Wu K, Liu G, Corke H. Diversity analysis of starch physicochemical properties in 95 proso millet (Panicum miliaceum L.) accessions. Food Chem, 2020, 324:126863.
[13] 何杰丽, 石甜甜, 陈凌, 王海岗, 高志军, 杨美红, 王瑞云, 乔治军. 糜子EST-SSR的开发及种质资源遗传多样性分析. 植物学报, 2019, 54:723-732.
doi: 10.11983/CBB19037
He J L, Shi T T, Chen L, Wang H G, Gao Z J, Yang M H, Wang R Y, Qiao Z J. The genetic diversity of common millet (Panicum miliaceum) germplasm resources based on the EST-SSR markers. Bull Bot, 2019, 54:723-732 (in Chinese with English abstract).
[14] 石甜甜, 何杰丽, 高志军, 陈凌, 王海岗, 乔治军, 王瑞云. 利用EST-SSR评估糜子资源遗传差异. 中国农业科学, 2019, 52:4100-4109.
Shi T T, He J L, Gao Z J, Chen L, Wang H G, Qiao Z J, Wang R Y. Genetic diversity of common millet resources assessed with EST-SSR markers. Sci Agric Sin, 2019, 52:4100-4109 (in Chinese with English abstract).
[15] 寇淑君, 霍阿红, 付国庆, 纪军建, 王瑶, 左振兴, 刘敏轩, 陆平. 利用荧光SSR分析中国糜子的遗传多样性和群体遗传结构. 中国农业科学, 2019, 52:1475-1487.
Kou S J, Huo A H, Fu G Q, Ji J J, Wang Y, Zuo Z X, Liu M X, Lu P. Genetic diversity and population structure of broomcorn millet in China based on fluorescently labeled SSR. Sci Agric Sin, 2019, 52:1457-1487 (in Chinese with English abstract).
[16] Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R, Yang Y, Song W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015, 35:136.
doi: 10.1007/s11032-015-0335-0
[17] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 镕葛建, 江彬, 张宪晨, 田红丽, 侯振华, 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50:1-14.
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Rong G J, Jiang B, Zhang X C, Tian H L, Hou Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017, 50:1-14 (in Chinese with English abstract).
[18] 赵艳杰, 冯艳芳, 黄思思, 马莹雪, 李嫒嫒, 张蝶, 邓超, 韩瑞玺, 唐浩. 182份东北地区受保护大豆品种DNA指纹库的构建及分析. 中国种业, 2019, (11):43-47.
Zhao Y J, Feng Y F, Huang S S, Ma Y X, Li Y Y, Zhang D, Deng C, Han R X, Tang H. Construction and analysis of DNA fingerprint database of 182 protected soybean varieties in Northeast China. China Seed Ind, 2019, (11):43-47 (in Chinese with English abstract).
[19] Hebert P D, Cywinska A, Ball S L, de Waard J R. Biological identifications through DNA barcodes. Proc Biol Sci, 2003, 270:313-321.
doi: 10.1098/rspb.2002.2218
[20] 陆徐忠, 倪金龙, 李莉, 汪秀峰, 马卉, 张小娟, 杨剑波. 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014, 40:823-829.
Lu X A, Ni J L, Li L, Wang X F, Ma H, Zhang X J, Yang J B. Construction of rice variety identity using SSR fingerprint and commodity information. Acta Agron Sin, 2014, 40:823-829 (in Chinese with English abstract).
[21] 李红琴, 刘宝龙, 张波, 张怀刚. 青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立. 作物杂志, 2020, (3):60-65.
Li H Q, Liu B L, Zhang B, Zhang H G. Analysis of genetic diversity and establishment of molecular ID of the wheat cultivars registered in Qinghai using SSR. Crops, 2020, (3):60-65 (in Chinese with English abstract).
[22] 侯丽媛, 张春芬, 邓舒, 肖蓉, 赵菁, 孟玉平, 曹秋芬. 苹果新品种‘赤霞’和栽培品种遗传多样性分析和分子身份证构建. 分子植物育种, 2020, 18:7588-7599.
Hou L Y, Zhang C F, Deng S, Xiao R, Zhao J, Meng Y P, Cao Q F. Analysis of genetic diversity and establishment of molecular identity card of a new apple cultivar ‘Chixia’ and cultivars. Mol Plant Breed, 2020, 18:7588-7599 (in Chinese with English abstract).
[23] 冉昆, 隋静, 王宏伟, 魏树伟, 张勇, 董冉, 董肖昌, 王少敏. 利用SSR荧光标记构建山东地方梨种质资源分子身份证. 果树学报, 2018, 35(增刊1):71-78.
Ran K, Sui J, Wang H W, Wei S W, Zhang Y, Dong R, Dong X C, Wang S M. Using the fluorescent labeled SSR markers to establish the molecular ID of pear germplasm resources in Shandong. J Fruit Sci, 2018, 35(S1):71-78 (in Chinese with English abstract).
[24] 杨文娟, 张艳欣, 王林海, 魏鑫, 黎冬华, 高媛, 刘盼, 张秀荣. 一个芝麻应用核心种质的DNA分子身份证构建. 作物学报, 2018, 44:1010-1020.
Yang W J, Zhang Y X, Wang L H, Wei X, Li D H, Gao Y, Liu P, Zhang X R. Establishment of DNA molecular identification for a sesame (Sesamum indicum L.) applied core collection. Acta Agron Sin, 2018, 44:1010-1020 (in Chinese with English abstract).
[25] 李法鹏. 花生种质资源遗传多样性研究. 河南农业大学硕士学位论文,河南郑州, 2019.
Li F P. Genetic Diversity of Peanut Germplasm Resources. MS Thesis of Henan Agricultural University, Zhengzhou, Henan,China, 2019 (in Chinese with English abstract).
[26] 倪西源, 柳寒, 黄吉祥, 石江华, 赵坚义. 利用InDel标记构建甘蓝型油菜的分子身份证. 分子植物育种, 2020, 18:4671-4679.
Ni X Y, Liu H, Huang J X, Shi J H, Zhao J Y. Molecular identifies establishment for rapeseed (Brassica napus L.) accessions using InDel markers. Mol Plant Breed, 2020, 18:4671-4679 (in Chinese with English abstract).
[27] 王黎明, 焦少杰, 姜艳喜, 严洪冬, 苏德峰, 孙广全. 142份甜高粱品种的分子身份证构建. 作物学报, 2011, 37:1975-1983.
Wang L M, Jiao S J, Jiang Y X, Yan H D, Su D F, Sun G Q. Establishment of molecular identity in 142 sweet sorghum varieties. Acta Agron Sin, 2011, 37:1975-1983 (in Chinese with English abstract).
[28] 马琳, 刘海珍, 陆徐忠, 倪金龙, 张小娟, 杨剑波. 130份甘蓝型油菜种质分子身份证的构建. 中国油料作物学报, 2013, 35:231-239.
Ma L, Liu H Z, Lu X Z, Ni J L, Zhang X J, Yang J B. Molecular identity of 130 Brassica napus varieties. Chin J Oil Crop Sci, 2013, 35:231-239 (in Chinese with English abstract).
[29] Cho Y I, Chung J W, Lee G A, Ma K H, Dixit A, Gwag J G, Park Y J. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes Genomics, 2010, 32:267-273.
doi: 10.1007/s13258-010-0007-8
[30] 王银月, 刘敏轩, 陆平, 乔治军, 杨天育, 李海, 崔喜艳. 构建黍稷分子遗传图谱SSR引物的筛选. 作物杂志, 2014, (4):32-38.
Wang Y Y, Liu M X, Lu P, Qiao Z J, Yang T Y, Li H, Cui X Y. The SSR marker selection of broomcorn millet (Panicum miliaceum L.) for construction of genetic linkage map. Crops, 2014, (4):32-38 (in Chinese with English abstract).
[31] 王璐琳, 王瑞云, 何杰丽, 薛延桃, 陈凌, 王海岗, 乔治军. 糜子特异性SSR标记的开发. 山西农业科学, 2018, 46:1-4.
Wang L L, Wang R Y, He J L, Xue Y T, Chen L, Wang H G, Qiao Z J. Development of specific SSR marker in common millet. J Shanxi Agric Sci, 2018, 46:1-4 (in Chinese with English abstract).
[32] 王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军. 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学, 2017, 50:3848-3870.
Wang R Y, Liu X Y, Wang H G, Lu P, Liu M X, Chen L, Qiao Z J. Evaluation of genetic diversity of common millet (Panicum miliaceum) germplasm available in China using high motif nucleotide repeat SSR markers. Sci Agric Sin, 2017, 50:3848-3859 (in Chinese with English abstract).
[33] 陈小红, 何杰丽, 石甜甜, 邵欢欢, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于转录组测序开发糜子SSR标记. 中国农业科学, 2020, 53:1940-1949.
Chen X H, He J L, Shi T T, Shao H H, Wang H G, Chen L, Gao Z J, Wang R Y, Qiao Z J. Developing SSR markers of proso millet based on transcriptome sequencing. Sci Agric Sin, 2020, 53:1940-1949 (in Chinese with English abstract).
[34] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res, 1991, 19:1349.
pmid: 2030957
[35] Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21:2128-2129.
doi: 10.1093/bioinformatics/bti282
[36] Yeh F C, Boyle T J. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 1997, 129:157.
[37] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol, 2011, 28:2731-2739.
doi: 10.1093/molbev/msr121
[38] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76:5269-5273.
doi: 10.1073/pnas.76.10.5269
[39] Botstein D. A theory of modular evolution for bacteriophages. Ann N Y Acad Sci, 1980, 354:484-490.
doi: 10.1111/nyas.1980.354.issue-1
[40] 连帅, 陆平, 乔治军, 张琦, 张茜, 刘敏轩, 王瑞云. 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学, 2016, 49:3264-3275.
Lian S, Lu P, Qiao Z J, Zhang Q, Zhang Q, Liu M X, Wang R Y. Genetic diversity in broomcorn millet (Panicum miliaceum L.) from China and abroad by using SSR markers. Sci Agric Sin, 2016, 49:3264-3275 (in Chinese with English abstract).
[41] 薛延桃, 陆平, 乔治军, 刘敏轩, 王瑞云. 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学, 2018, 51:19-39.
Xue Y T, Lu P, Qiao Z J, Liu M X, Wang R Y. Genetic diversity and genetic relationship of broomcorn millet (Panicum miliaceum L.) germplasm based on SSR markers. Sci Agric Sin, 2018, 51:2846-2859 (in Chinese with English abstract).
[42] 薛延桃, 陆平, 史梦莎, 孙昊月, 刘敏轩, 王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究. 作物学报, 2019, 45:1511-1521.
Xue Y T, Lu P, Shi M S, Sun H Y, Liu M X, Wang R Y. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu. Acta Agron Sin, 2019, 45:1511-1521 (in Chinese with English abstract).
[43] 王舒婷, 何杰丽, 石甜甜, 陈凌, 王海岗, 王瑞云, 乔治军. 利用微卫星标记分析山西糜子的遗传多样性. 植物遗传资源学报, 2019, 20:69-78.
Wang S T, He J L, Shi T T, Chen L, Wang H G, Wang R Y, Qiao Z J. Genetic diversity analysis of broomcorn millet (Panicum miliaceum L.) of Shanxi province using microsatellite markers. J Plant Genet Resour, 2019, 20:69-78 (in Chinese with English abstract).
[44] 王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军. 利用荧光SSR分析中国糜子遗传多样性. 作物学报, 2017, 43:530-548.
doi: 10.3724/SP.J.1006.2017.00530
Wang R Y, Ji X, Lu P, Liu M X, Xu Y, Wang L, Wang H G, Qiao Z J. Analysis of genetic diversity in common millet (Panicum miliaceum) using fluorescent SSR in Chinese. Acta Agron Sin, 2017, 43:530-548 (in Chinese with English abstract).
[45] 程本义, 夏俊辉, 龚俊义, 杨仕华. SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用. 中国水稻科学, 2011, 25:672-676.
Cheng B Y, Xia J H, Gong J Y, Yang S H. Application of capillary electrophoresis detection with fluorescent SSR markers in rice DNA fingerprint identification. Chin J Rice Sci, 2011, 25:672-676 (in Chinese with English abstract).
[46] 易红梅, 王凤格, 赵久然, 王璐, 郭景伦, 原亚萍. 玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究. 华北农学报, 2006, 21(5):64-67.
Yi H M, Wang F G, Zhao J R, Wang L, Guo J L, Yuan Y P. Comparison of two maize SSR detection methods: capillary electrophoresis with fluorescence detection method and denaturing page silver-staining detection method. Acta Agric Boreali-Sin, 2006, 21(5):64-67 (in Chinese with English abstract).
[47] 李春花, 陈蕤坤, 王艳青, 尹桂芳, 卢文洁, 孙道旺, 吴斌, 王莉花. 利用SSR标记构建云南苦荞种质资源分子身份证. 分子植物育种, 2019, 17:1575-1582.
Li C H, Chen R C, Wang Y Q, Yin G F, Lu W J, Sun D W, Wu B, Wang L H. Establishment of the molecular ID for Yunnan tartary buckwheat germplasm resources based on SSR marker. Mol Plant Breed, 2019, 17:1575-1582 (in Chinese with English abstract).
[48] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建. 作物学报, 2021, 47:80-93.
doi: 10.3724/SP.J.1006.2021.04022
Guo C Y, Zhang L L, Chen S Y, Qi J M, Fang P P, Tao A F, Zhang L M, Zhang L W. Establishment of DNA molecular identification of applied core collection in jute. Acta Agron Sin, 2021, 47:80-93 (in Chinese with English abstract).
[49] Ohtsubo K, Nakamura S. Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products. J Agric Food Chem, 2007, 55:1501-1509.
doi: 10.1021/jf062737z
[50] Zhao Y N, Wang Y, Wang L X, Zhang D J. Molecular identification of mung bean accessions (Vigna radiate L.) from northeast China using capillary electrophoresis with fluorescence labeled SSR markers. Food Energy Secur, 2020, 9:e182.
[51] Li L, Xu X L, Wu P, Zhang G, Zhang G, Zhang X B. Establishment of molecular identity card for Cucumis melo cultivars using SSR markers. HortScience, 2018, 53:138-143.
doi: 10.21273/HORTSCI12537-17
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[3] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[4] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[5] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[6] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[7] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[8] 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73.
[9] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[10] 陆海燕,周玲,林峰,王蕊,王凤格,赵涵. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6): 872-878.
[11] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
[12] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[13] 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663.
[14] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[15] 贺建波,刘方东,邢光南,王吴彬,赵团结,管荣展,盖钧镒. 限制性两阶段多位点全基因组关联分析方法的特点与计算程序[J]. 作物学报, 2018, 44(9): 1274-1289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!