欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 896-907.doi: 10.3724/SP.J.1006.2022.14036

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯StMAPK4响应低温胁迫的功能解析

冯亚1,2(), 朱熙1,2, 罗红玉1,2, 李世贵1,2, 张宁1,2,*(), 司怀军1,2   

  1. 1甘肃农业大学生命科学技术学院, 甘肃兰州 730070
    2甘肃省干旱生境作物学省部共建国家重点实验室培育基地, 甘肃兰州 730070
  • 收稿日期:2021-02-26 接受日期:2021-06-16 出版日期:2022-04-12 网络出版日期:2021-07-25
  • 通讯作者: 张宁
  • 作者简介:E-mail: 2992919739@qq.com
  • 基金资助:
    国家自然科学基金项目(31960444);甘肃省干旱生境作物学重点实验室——省部共建国家重点实验室培育基地主任基金课题资助(GSCS-2019-Z03)

Functional analysis of StMAPK4 in response to low temperature stress in potato

FENG Ya1,2(), ZHU Xi1,2, LUO Hong-Yu1,2, LI Shi-Gui1,2, ZHANG Ning1,2,*(), SI Huai-Jun1,2   

  1. 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
  • Received:2021-02-26 Accepted:2021-06-16 Published:2022-04-12 Published online:2021-07-25
  • Contact: ZHANG Ning
  • Supported by:
    National Natural Science Foundation of China(31960444);Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University(GSCS-2019-Z03)

摘要:

马铃薯易受低温危害, 造成减产。MAPK基因广泛参与多种环境胁迫, 研究发现其参与低温调控。为探究马铃薯StMAPK4在响应低温胁迫过程中的功能, 本研究以马铃薯栽培品种‘Atlantic’为试验材料, 分析其在低温(4℃)胁迫下不同时间点在马铃薯根茎叶中的表达特性, 并对StMAPK4基因进行生物信息学分析及对其编码的蛋白进行亚细胞定位分析, 构建StMAPK4的过表达和RNAi干扰表达载体, 转化马铃薯获得转基因植株, 并分析了在4℃处理下非转基因(NT)、过表达和RNAi干扰表达转基因植株的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性、脯氨酸(Pro)和丙二醛(MDA)含量的变化。结果显示, StMAPK4蛋白的等电点为4.97, 属于酸性蛋白, 该蛋白定位于细胞核和细胞膜; 低温胁迫下, StMAPK4在根茎叶中的表达量显著升高; StMAPK4过表达植株的SOD、POD活性和脯氨酸含量较NT植株明显升高, 而MDA含量明显降低; StMAPK4干扰表达植株的SOD、POD活性和脯氨酸含量较NT植株明显降低, 而MDA含量明显升高; 通过表型观察发现, 非转基因和RNAi干扰表达植株的叶片萎蔫严重, 而过表达植株的叶片受影响较小。因此, 过表达StMAPK4基因可以增强马铃薯植株对低温胁迫的耐受性。

关键词: 马铃薯, StMAPK4, 低温, 亚细胞定位, 遗传转化

Abstract:

Potato is vulnerable to low temperatures resulting in reduced yield production. MAPK gene is widely involved in a variety of environmental stress, and it has been detected to be involved in low temperature regulation. In this present study, to explore StMAPK4 function in response to low temperature stress, potato cultivar ‘Atlantic’ as the experimental material, the expression characteristics of StMAPK4 gene were analyzed in potato root, stem, and leaf at the different time under low temperature (4℃) stress. StMAPK4 gene was analyzed using bioinformatics and its encoded protein subcellular localization was assayed. StMAPK4 overexpression and RNA interference expression vectors were constructed and obtained transgenic potato plants. The activities of superoxide dismutase (SOD) and peroxidase (POD), and the contents of proline (Pro) and malondialdehyde (MDA) in non-transgenic (NT), overexpressed and RNAi interfered transgenic plants were analyzed under 4℃. The results showed that the isoelectric point (pI) of StMAPK4 was 4.97 and it was acidic protein localized in the nucleus and cell membrane. The relative expression levels of StMAPK4 in roots, stems, and leaves significantly increased under low temperature stress. Compared with non-transgenic plants, the activities of SOD and POD and the content of proline in StMAPK4 overexpressed plants were significantly increased, while the content of MDA was significantly decreased. Compared with NT plants, the activities of SOD and POD, and the content of Pro in StMAPK4 overexpression plants were significantly decreased, while the content of MDA was significantly increased. Phenotypic observation revealed that the leaves of non-transgenic and RNAi interfered expression plants wilted seriously, while the leaves of overexpressed plants were less affected. In summary, the overexpression of StMAPK4 gene can enhance the tolerance of low temperature stress in potato plants.

Key words: potato, StMAPK4, low temperature, subcellular localization, genetic transformation

表1

amiR-StMAPK4的PCR扩增引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
I GATATACCCTGTGTAAATCGCACTCTCTCTTTTGTATTCC
II GAGTGCGATTTACACAGGGTATATCAAAGAGAATCAATGA
III GAGTACGATTTACACTGGGTATTTCACAGGTCGTGATATG
IV GAAATACCCAGTGTAAATCGTACTCTACATATATATTCCT
A CTGCAAGGCGATTAAGTTGGGTAAC
B GCGGATAACAATTTCACACAGGAAACAG

表2

PCR和qRT-PCR的特异性引物"

引物名称
Primer name
引物编号
Primer ID
引物序列
Primer sequence (5'-3')
PCR primers for StMAPK4 正向Forward CGGGGGACGAGCTCGGTACCATGGATGCTGAAAACATTGAAAAT
反向Reverse CCATGTCGACTCTAGACTTGGTTGTATCGGGATCAAACT
PCR primers for Ef1a 正向Forward CAGCCAATCCCATCAAGACG
反向Reverse ATCATTCCGGAGCACTCGAT
qRT-PCR primers for StMAPK4 正向Forward ACGCTCTTCACAGGCCCTCACAGAAG
反向Reverse TGGAACTTGAGGCAGCTGCTTGACGT

图1

马铃薯StMAPK4蛋白与其他物种同源蛋白的氨基酸序列比对"

图2

马铃薯StMAPK4基因与其他11个物种的同源基因发育树"

表3

StMAPK4启动子区顺式作用元件分析"

位点名称
Site name
序列
Sequence
功能
Function
ABRE ACGTG 脱落酸反应的顺式作用元件
cis-acting element involved in abscisic acid response
ARE AAACCA 厌氧诱导反应的顺式作用调节元件
cis-acting regulatory element essential for the anaerobic induction
CAAT-box CAAAT, CCAAT 启动子和增强子区域顺式作用元件
Common cis-acting element in promoter and enhancer regions
G-Box CACGTT, TAAACGTG 参与光响应的顺式作用调节元件
cis-acting regulatory element involved in light response
LTR CCGAAA 参与低温反应的顺式作用元件
cis-acting element involved in low-temperature response
MBS CAACTG 参与干旱诱导的MYB结合位点
MYB binding site involved in drought-inducibility
P-box CCTTTTG 赤霉素响应元件
Gibberellin-responsive element
TC-rich repeats CACGTT 参与防御和应激反应的顺式作用元件
cis-acting element involved in defense and stress response

图3

StMAPK4蛋白的二级结构 蓝色表示α-螺旋(Hh); 红色代表延伸链(Ee); 绿色表示β转角(Tt); 紫色表示无规则卷曲(Cc)。"

图4

StMAPK4蛋白的三级结构及结构域"

图5

StMAPK4的蛋白质互作网络"

图6

StMAPK4的扩增产物条带及amiR-MAPK4前体片段扩增 A: StMAPK4的扩增产物条带; B: 以pRS300质粒为模板, 扩增的a (引物A和IV)、b (引物Ⅲ和II)和c (引物I和B)小片段; C: 以a、b和c小片段混合物为模板扩增的d片段(引物A和B); M: DL 2000 marker。"

图7

pCE-StMAPK4 质粒(A)及pBI121-miR-StMAPK4重组质粒双酶切(B) M: DL 2000 marker."

图8

pCEGFP-StMAPK4的亚细胞定位 pCEGFP: 空白对照; pCEGFP-StMAPK4: pCEGFP-StMAPK4融合蛋白; A: 在暗视野中的pCEGFP荧光信号; B: 叶绿体的自身荧光; C: 亮视野下的细胞形态; D: 叠加场。"

图9

qRT-PCR分析低温处理下StMAPK4基因的组织特异性表达 *和**分别表示在0.05和0.01水平差异显著, n = 9。"

图10

转基因植株的qRT-PCR检测 OE-1, 2, 3, 4, 5, 6: 过表达植株; RNAi-1, 2, 3, 4, 5, 6: 干扰表达植株; NT: 非转基因植株; *和**分别表示在0.05和0.01水平差异显著, n = 9。"

图11

低温胁迫下马铃薯转基因植株表型分析 NT: 非转基因植物; OE: 过表达转基因马铃薯植株; RNAi: 干扰表达转基因马铃薯植株。"

图12

低温胁迫下转基因植株各生理指标含量的测定 NT: 非转基因植株; OE-2, 3, 6: pCE1300-StMAPK4转化植株; RNAi-1, 2, 4: pBI121-amiR-StMAPK4转化植株; 不同小写字母表示在0.05水平差异显著。"

[1] Lazar A, Coll A, Dobnik D, Baebler S, Bedina Z A, Zel J, Gruden K. Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y. PLoS One, 2014, 9:e104553.
[2] Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51:245-266.
doi: 10.1146/phyto.2013.51.issue-1
[3] Verma D, Jalmi S K, Bhagat P K, Verma N, Sinha A K. A bHLH transcription factor,MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J, 2020, 287:2560-2576.
doi: 10.1111/febs.v287.12
[4] Schenk P W, Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1999, 1449:1-24.
pmid: 10076047
[5] Liu Q, Xue Q. Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol Biochem, 2007, 45:6-14.
doi: 10.1016/j.plaphy.2006.12.011
[6] Chen Y H, Wang N N, Zhang J B, Zheng Y, Li X B. Genome-wide identification of the mitogen-activated protein kinase (MAPK) family in cotton (Gossypium hirsutum) reveals GhMPK6 involved in fiber elongation. Plant Mol Biol, 2020, 103:391-407.
doi: 10.1007/s11103-020-00999-9
[7] Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20:750.
doi: 10.1186/s12864-019-6144-9
[8] Lyu X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y. Crosstalk between Nitric oxide and MPK1/2 mediates cold acclimation-induced chilling tolerance in tomato. Plant Cell Physiol, 2017, 8:1963-1975.
[9] Zhou H, Ren S, Han Y, Zhang Q, Qin L, Xing Y. Identification and analysis of Mitogen-Activated Protein Kinase (MAPK) cascades in Fragaria vesca. Int J Mol Sci, 2017, 18:1766.
doi: 10.3390/ijms18081766
[10] Tang R, Gupta S K, Niu S, Li X Q, Yang Q, Chen G, Zhu W, Haroon M. Transcriptome analysis of heat stress response genes in potato leaves. Mol Biol Rep, 2020, 47:4311-4321.
doi: 10.1007/s11033-020-05485-5
[11] 高芸, 张玉雪, 马泉, 苏盛楠, 李春燕, 丁锦峰, 朱敏, 朱新开, 郭文善. 春季低温对小麦花粉育性及粒数形成的影响. 作物学报, 2021, 47:104-115.
doi: 10.3724/SP.J.1006.2021.01031
Gao Y, Zhang Y X, Ma Q, Su S N, Li C Y, Ding J F, Zhu M, Zhu X K, Guo W S. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat. Acta Agron Sin, 2021, 47:104-115 (in Chinese with English abstract).
[12] Lyons J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol, 1970, 145:386-389.
[13] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定. 作物学报, 2021, 47:638-649.
doi: 10.3724/SP.J.1006.2021.04139
Jia X P, Li J F, Zhang B, Quan J Z, Wang Y F, Zhao Y, Zhang X M, Wang Z S, Sang L M, Dong Z P. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet(Setaria italica L.). Acta Agron Sin, 2021, 47:638-649 (in Chinese with English abstract).
[14] 孙平勇, 张武汉, 张莉, 舒服, 何强, 彭志荣, 邓华凤. 水稻氮高效、耐冷基因OsGRF4功能标记的开发及其利用. 作物学报, 2021, 47:684-690.
doi: 10.3724/SP.J.1006.2021.02035
Sun P Y, Zhang W H, Zhang L, Shu F, He Q, Peng Z R, Deng H F. Development and application of functional marker for high nitrogen use efficiency and chilling tolerance gene OsGRF4 in rice. Acta Agron Sin, 2021, 47:684-690 (in Chinese with English abstract).
[15] Qi X, Tang X, Liu W, Fu X, Luo H, Ghimire S, Zhang N, Si H. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146:438-446.
doi: 10.1016/j.plaphy.2019.11.042
[16] Zhu X, Zhang N, Liu X, Wang S, Li S, Yang J, Wang F, Si H. StMAPK3 controls oxidase activity, photosynthesis and stomatal aperture under salinity and osmosis stress in potato. Plant Physiol Biochem, 2020, 156:167-177.
doi: 10.1016/j.plaphy.2020.09.012
[17] Lin Y J, Li M J, Hsing H C, Chen T K, Yang T T, Ko S S. Spike activator 1, encoding a bhlh, mediates axillary bud development and spike initiation in Phalaenopsis aphrodite. Int J Mol Sci, 2019, 20:5406.
doi: 10.3390/ijms20215406
[18] 杨超英, 王芳, 王舰. 低温驯化对马铃薯半致死温度的影响. 江苏农业科学, 2014, (4):80-81.
Yang C Y, Wang F, Wang J. Effects of low temperature acclimation on the semi-lethal temperature of potato. Jiangsu Agric Sci, 2014, (4):80-81 (in Chinese).
[19] 李飞. 野生马铃薯植株苗期耐冻性鉴定及耐冻机理研究. 中国农业科学院博士学位论文,北京, 2008.
Li F. Study on Freezing Tolerance and Freezing Tolerance Mechanism of Wild Potato Plants at Seedling Stage. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2008 (in Chinese with English abstract).
[20] Si H J, Xie C H, Liu J. An efficient protocol for agrobacterium-mediated transformation with microtuber and the introduction of an antisense class I patatin gene into potato. Acta Agron Sin, 2003, 29:801-805.
doi: 10.3724/SP.J.1095.2012.00345
[21] 王学奎, 黄见良. 植物生理生化实验原理和技术(第3版). 北京: 高等教育出版社, 2015, pp 282-288.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological and Biochemical Experiments, 3rd edn. Beijing: Higher Education Press, 2015. pp 282-288(in Chinese).
[22] Irigoyen J J, Einerich D W, Sánchez D M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant, 2010, 84:55-60.
doi: 10.1111/ppl.1992.84.issue-1
[23] Hodges D M, Delong J M, Prange F R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207:604-611.
doi: 10.1007/s004250050524
[24] Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev Cell, 2017, 43:630-642.
doi: 10.1016/j.devcel.2017.09.025
[25] Zhao C, Wang P, Si T, Hsu C C, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao W A, Zhu J K. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell, 2017, 43:618-629.
doi: 10.1016/j.devcel.2017.09.024
[26] Wen J Q, Oono K, Imai R. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol, 2002, 129:1880-1891.
doi: 10.1104/pp.006072
[27] Kikuchi A, Huynh H D, Endo T, Watanabe K. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breed Sci, 2015, 65:85-102.
doi: 10.1270/jsbbs.65.85
[28] Zhu X, Zhang N, Liu X, Li S, Yang J, Hong X, Wang F, Si H. Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Rep, 2021, 40:491-506.
doi: 10.1007/s00299-020-02645-6 pmid: 33388892
[29] Zhang L, Zhao T, Sun X, Wang Y, Du C, Zhu Z, Gichuki D K, Wang Q, Li S, Xin H. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Mol Biol, 2019, 100:95-110.
doi: 10.1007/s11103-019-00846-6
[30] Bornman C H, Jansson E. Nicotiana tabacum callus studies: X. ABA increases resistance to cold damage. Physiol Plant, 2010, 48:491-493.
doi: 10.1111/ppl.1980.48.issue-4
[31] 张学明. 桉树在低温胁迫下的膜脂过氧化作用和膜伤害. 经济林研究, 1994, 12(增刊1):12-14.
Zhang X M. Membrane lipid peroxidation and membrane damage in eucalyptus under low temperature stress. Econ For Res, 1994, 12(S1):12-14 (in Chinese).
[32] Tak H, Negi S, Rajpurohit Y S, Misra H S, Ganapathi T R. MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. Plant Physiol Biochem, 2020, 146:112-123.
doi: 10.1016/j.plaphy.2019.11.012
[33] Shou H, Bordallo P, Fan J B, Yeakley J M, Bibikova M, Sheen J, Wang K. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA, 2004, 101:3298-3303.
doi: 10.1073/pnas.0308095100
[34] Che Y Z, Zhang N, Zhu X, Li S G, Wang S L, Si H J. Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Sci Hortic, 2020, 261:108949.
[35] Liu Y, Zhou J. MAP kinase regulation of ICE1 in freezing tolerance. Trends Plant Sci, 2018, 23:91-93.
doi: 10.1016/j.tplants.2017.12.002
[36] Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J, 2000, 24:655-665.
pmid: 11123804
[37] Lin Q, Xie Y, Guan W, Duan Y, Wang Z, Sun C. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chem, 2019, 297:124-991.
[38] Wang H, Liu C, Ren Y, Wu M, Wu Z, Chen Y, He L, Tang B, Huang X, Shabala S, Yu M, Huang L. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis. Plant Sci, 2019, 288:110-218.
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[4] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[5] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[10] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[11] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[12] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[13] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[14] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[15] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!