作物学报 ›› 2022, Vol. 48 ›› Issue (4): 896-907.doi: 10.3724/SP.J.1006.2022.14036
冯亚1,2(), 朱熙1,2, 罗红玉1,2, 李世贵1,2, 张宁1,2,*(), 司怀军1,2
FENG Ya1,2(), ZHU Xi1,2, LUO Hong-Yu1,2, LI Shi-Gui1,2, ZHANG Ning1,2,*(), SI Huai-Jun1,2
摘要:
马铃薯易受低温危害, 造成减产。MAPK基因广泛参与多种环境胁迫, 研究发现其参与低温调控。为探究马铃薯StMAPK4在响应低温胁迫过程中的功能, 本研究以马铃薯栽培品种‘Atlantic’为试验材料, 分析其在低温(4℃)胁迫下不同时间点在马铃薯根茎叶中的表达特性, 并对StMAPK4基因进行生物信息学分析及对其编码的蛋白进行亚细胞定位分析, 构建StMAPK4的过表达和RNAi干扰表达载体, 转化马铃薯获得转基因植株, 并分析了在4℃处理下非转基因(NT)、过表达和RNAi干扰表达转基因植株的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性、脯氨酸(Pro)和丙二醛(MDA)含量的变化。结果显示, StMAPK4蛋白的等电点为4.97, 属于酸性蛋白, 该蛋白定位于细胞核和细胞膜; 低温胁迫下, StMAPK4在根茎叶中的表达量显著升高; StMAPK4过表达植株的SOD、POD活性和脯氨酸含量较NT植株明显升高, 而MDA含量明显降低; StMAPK4干扰表达植株的SOD、POD活性和脯氨酸含量较NT植株明显降低, 而MDA含量明显升高; 通过表型观察发现, 非转基因和RNAi干扰表达植株的叶片萎蔫严重, 而过表达植株的叶片受影响较小。因此, 过表达StMAPK4基因可以增强马铃薯植株对低温胁迫的耐受性。
[1] | Lazar A, Coll A, Dobnik D, Baebler S, Bedina Z A, Zel J, Gruden K. Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y. PLoS One, 2014, 9:e104553. |
[2] |
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51:245-266.
doi: 10.1146/phyto.2013.51.issue-1 |
[3] |
Verma D, Jalmi S K, Bhagat P K, Verma N, Sinha A K. A bHLH transcription factor,MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J, 2020, 287:2560-2576.
doi: 10.1111/febs.v287.12 |
[4] |
Schenk P W, Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1999, 1449:1-24.
pmid: 10076047 |
[5] |
Liu Q, Xue Q. Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol Biochem, 2007, 45:6-14.
doi: 10.1016/j.plaphy.2006.12.011 |
[6] |
Chen Y H, Wang N N, Zhang J B, Zheng Y, Li X B. Genome-wide identification of the mitogen-activated protein kinase (MAPK) family in cotton (Gossypium hirsutum) reveals GhMPK6 involved in fiber elongation. Plant Mol Biol, 2020, 103:391-407.
doi: 10.1007/s11103-020-00999-9 |
[7] |
Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20:750.
doi: 10.1186/s12864-019-6144-9 |
[8] | Lyu X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y. Crosstalk between Nitric oxide and MPK1/2 mediates cold acclimation-induced chilling tolerance in tomato. Plant Cell Physiol, 2017, 8:1963-1975. |
[9] |
Zhou H, Ren S, Han Y, Zhang Q, Qin L, Xing Y. Identification and analysis of Mitogen-Activated Protein Kinase (MAPK) cascades in Fragaria vesca. Int J Mol Sci, 2017, 18:1766.
doi: 10.3390/ijms18081766 |
[10] |
Tang R, Gupta S K, Niu S, Li X Q, Yang Q, Chen G, Zhu W, Haroon M. Transcriptome analysis of heat stress response genes in potato leaves. Mol Biol Rep, 2020, 47:4311-4321.
doi: 10.1007/s11033-020-05485-5 |
[11] |
高芸, 张玉雪, 马泉, 苏盛楠, 李春燕, 丁锦峰, 朱敏, 朱新开, 郭文善. 春季低温对小麦花粉育性及粒数形成的影响. 作物学报, 2021, 47:104-115.
doi: 10.3724/SP.J.1006.2021.01031 |
Gao Y, Zhang Y X, Ma Q, Su S N, Li C Y, Ding J F, Zhu M, Zhu X K, Guo W S. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat. Acta Agron Sin, 2021, 47:104-115 (in Chinese with English abstract). | |
[12] | Lyons J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol, 1970, 145:386-389. |
[13] |
贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定. 作物学报, 2021, 47:638-649.
doi: 10.3724/SP.J.1006.2021.04139 |
Jia X P, Li J F, Zhang B, Quan J Z, Wang Y F, Zhao Y, Zhang X M, Wang Z S, Sang L M, Dong Z P. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet(Setaria italica L.). Acta Agron Sin, 2021, 47:638-649 (in Chinese with English abstract). | |
[14] |
孙平勇, 张武汉, 张莉, 舒服, 何强, 彭志荣, 邓华凤. 水稻氮高效、耐冷基因OsGRF4功能标记的开发及其利用. 作物学报, 2021, 47:684-690.
doi: 10.3724/SP.J.1006.2021.02035 |
Sun P Y, Zhang W H, Zhang L, Shu F, He Q, Peng Z R, Deng H F. Development and application of functional marker for high nitrogen use efficiency and chilling tolerance gene OsGRF4 in rice. Acta Agron Sin, 2021, 47:684-690 (in Chinese with English abstract). | |
[15] |
Qi X, Tang X, Liu W, Fu X, Luo H, Ghimire S, Zhang N, Si H. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146:438-446.
doi: 10.1016/j.plaphy.2019.11.042 |
[16] |
Zhu X, Zhang N, Liu X, Wang S, Li S, Yang J, Wang F, Si H. StMAPK3 controls oxidase activity, photosynthesis and stomatal aperture under salinity and osmosis stress in potato. Plant Physiol Biochem, 2020, 156:167-177.
doi: 10.1016/j.plaphy.2020.09.012 |
[17] |
Lin Y J, Li M J, Hsing H C, Chen T K, Yang T T, Ko S S. Spike activator 1, encoding a bhlh, mediates axillary bud development and spike initiation in Phalaenopsis aphrodite. Int J Mol Sci, 2019, 20:5406.
doi: 10.3390/ijms20215406 |
[18] | 杨超英, 王芳, 王舰. 低温驯化对马铃薯半致死温度的影响. 江苏农业科学, 2014, (4):80-81. |
Yang C Y, Wang F, Wang J. Effects of low temperature acclimation on the semi-lethal temperature of potato. Jiangsu Agric Sci, 2014, (4):80-81 (in Chinese). | |
[19] | 李飞. 野生马铃薯植株苗期耐冻性鉴定及耐冻机理研究. 中国农业科学院博士学位论文,北京, 2008. |
Li F. Study on Freezing Tolerance and Freezing Tolerance Mechanism of Wild Potato Plants at Seedling Stage. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2008 (in Chinese with English abstract). | |
[20] |
Si H J, Xie C H, Liu J. An efficient protocol for agrobacterium-mediated transformation with microtuber and the introduction of an antisense class I patatin gene into potato. Acta Agron Sin, 2003, 29:801-805.
doi: 10.3724/SP.J.1095.2012.00345 |
[21] | 王学奎, 黄见良. 植物生理生化实验原理和技术(第3版). 北京: 高等教育出版社, 2015, pp 282-288. |
Wang X K, Huang J L. Principles and Techniques of Plant Physiological and Biochemical Experiments, 3rd edn. Beijing: Higher Education Press, 2015. pp 282-288(in Chinese). | |
[22] |
Irigoyen J J, Einerich D W, Sánchez D M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant, 2010, 84:55-60.
doi: 10.1111/ppl.1992.84.issue-1 |
[23] |
Hodges D M, Delong J M, Prange F R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207:604-611.
doi: 10.1007/s004250050524 |
[24] |
Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev Cell, 2017, 43:630-642.
doi: 10.1016/j.devcel.2017.09.025 |
[25] |
Zhao C, Wang P, Si T, Hsu C C, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao W A, Zhu J K. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell, 2017, 43:618-629.
doi: 10.1016/j.devcel.2017.09.024 |
[26] |
Wen J Q, Oono K, Imai R. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol, 2002, 129:1880-1891.
doi: 10.1104/pp.006072 |
[27] |
Kikuchi A, Huynh H D, Endo T, Watanabe K. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breed Sci, 2015, 65:85-102.
doi: 10.1270/jsbbs.65.85 |
[28] |
Zhu X, Zhang N, Liu X, Li S, Yang J, Hong X, Wang F, Si H. Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Rep, 2021, 40:491-506.
doi: 10.1007/s00299-020-02645-6 pmid: 33388892 |
[29] |
Zhang L, Zhao T, Sun X, Wang Y, Du C, Zhu Z, Gichuki D K, Wang Q, Li S, Xin H. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Mol Biol, 2019, 100:95-110.
doi: 10.1007/s11103-019-00846-6 |
[30] |
Bornman C H, Jansson E. Nicotiana tabacum callus studies: X. ABA increases resistance to cold damage. Physiol Plant, 2010, 48:491-493.
doi: 10.1111/ppl.1980.48.issue-4 |
[31] | 张学明. 桉树在低温胁迫下的膜脂过氧化作用和膜伤害. 经济林研究, 1994, 12(增刊1):12-14. |
Zhang X M. Membrane lipid peroxidation and membrane damage in eucalyptus under low temperature stress. Econ For Res, 1994, 12(S1):12-14 (in Chinese). | |
[32] |
Tak H, Negi S, Rajpurohit Y S, Misra H S, Ganapathi T R. MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. Plant Physiol Biochem, 2020, 146:112-123.
doi: 10.1016/j.plaphy.2019.11.012 |
[33] |
Shou H, Bordallo P, Fan J B, Yeakley J M, Bibikova M, Sheen J, Wang K. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA, 2004, 101:3298-3303.
doi: 10.1073/pnas.0308095100 |
[34] | Che Y Z, Zhang N, Zhu X, Li S G, Wang S L, Si H J. Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Sci Hortic, 2020, 261:108949. |
[35] |
Liu Y, Zhou J. MAP kinase regulation of ICE1 in freezing tolerance. Trends Plant Sci, 2018, 23:91-93.
doi: 10.1016/j.tplants.2017.12.002 |
[36] |
Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J, 2000, 24:655-665.
pmid: 11123804 |
[37] | Lin Q, Xie Y, Guan W, Duan Y, Wang Z, Sun C. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chem, 2019, 297:124-991. |
[38] | Wang H, Liu C, Ren Y, Wu M, Wu Z, Chen Y, He L, Tang B, Huang X, Shabala S, Yu M, Huang L. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis. Plant Sci, 2019, 288:110-218. |
[1] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[2] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[3] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[4] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[5] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[6] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[7] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[8] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[9] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[10] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[11] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[12] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[13] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
[14] | 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331. |
[15] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
|