欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 930-941.doi: 10.3724/SP.J.1006.2022.12073

• 耕作栽培·生理生化 • 上一篇    下一篇

我国作物生产碳排放特征及助力碳中和的减排固碳途径

严圣吉1(), 邓艾兴1, 尚子吟1, 唐志伟1, 陈长青3, 张俊1,2,*(), 张卫建1,2,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2中国农业科学院农业农村碳达峰碳中和研究中心, 北京 100081
    3南京农业大学, 江苏南京 210095
  • 收稿日期:2021-10-14 接受日期:2021-11-15 出版日期:2022-04-12 网络出版日期:2021-11-20
  • 通讯作者: 张俊,张卫建
  • 作者简介:E-mail: 15690307667@163.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(绿肥, CARS-22);中国科学院学部咨询评议重点项目(2021-SM01-B-008);中国农业科学院科技创新工程资助(Y2021YJ02);中国农业科学院科技创新工程资助(CAAS-XTCX2016008)

Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production

YAN Sheng-Ji1(), DENG Ai-Xing1, SHANG Zi-Yin1, TANG Zhi-Wei1, CHEN Chang-Qing3, ZHANG Jun1,2,*(), ZHANG Wei-Jian1,2,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Chinese Academy of Agricultural Sciences, Center for Carbon neutrality in Agriculture and Rural Region, Beijing 100081, China
    3Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2021-10-14 Accepted:2021-11-15 Published:2022-04-12 Published online:2021-11-20
  • Contact: ZHANG Jun,ZHANG Wei-Jian
  • Supported by:
    China Agriculture Research System(Green Manure, CARS-22);Key Projects of Consultation and Evaluation of the Academic Department of the Chinese Academy of Sciences(2021-SM01-B-008);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(Y2021YJ02);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-XTCX2016008)

摘要:

作物生产不仅保障了国家粮食安全, 也是农业碳排放的主要源, 以及碳固定的重要汇。阐明主要农区作物生产碳排放特征, 探讨其达峰与中和途径, 可以为全国及地方作物生产绿色高质量发展和农业“双碳”目标的战略制定提供重要科学依据。本文基于国家统计数据, 比较分析了我国各地区作物生产碳排放特征, 探讨了助力碳中和的农田减排固碳途径。2018年我国作物生产碳排放占全国农业碳排放总量45.5%, 其中农田甲烷(CH4)、氧化亚氮(N2O)以及农用柴油消费的二氧化碳(CO2)排放分别占农业碳排放总量的22.9%、14.7%和7.9%。从区域排放来看, 作物生产碳排放总量和单位播种面积排放量均呈现南高北低特征, 其中以华东和华中地区最高, 减排潜力大。在作物生产碳排放中, 稻田CH4占50.3%, 是减排重点。我国作物生产碳排放总量于2015年出现峰值, 之后呈现下降趋势, 这与水稻播种面积、农田氮肥用量和农用柴油消费等减少趋势相一致。可见, 如果我国农产品进口不受显著影响, 作物生产碳排放已经呈现达峰趋势。情景推算发现, 仅靠农地土壤固碳很难实现作物生产的碳中和, 需要农田减排与固碳的兼顾。在丰产稳产前提下, 作物生产碳中和要以稻田CH4和旱地N2O减排优先, 在增强土壤碳汇功能的同时, 充分挖掘秸秆资源化利用、用地养地结合和农田林网建设等农田生态系统的综合固碳潜力。

关键词: 作物生产, 粮食安全, 气候变化, 碳达峰, 碳中和, 固碳减排

Abstract:

Crop production not only ensures national food security, but also is the main source of agricultural carbon emissions and an important pool of carbon sequestration. To clarify the characteristics of carbon emissions from crop production and discuss the approaches to reach the peak and neutrality in major agricultural areas can provide important scientific basis to the decision making of green and high-quality agricultural development and “dual-carbon” goal. Based on the national statistical data, this study compared and analyzed the characteristics of carbon emissions in crop planting regions in China, and presented the recommendations for carbon sequestration and greenhouse gas emission mitigation. The carbon emissions of crop production accounted for 45.5% of the national agricultural total carbon emissions in 2018, and the emissions of farmland methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) of diesel consumption accounted for 22.9%, 14.7%, and 7.9% of the total carbon emissions of agricultural production, respectively. In terms of the regional emissions, both the total carbon emission of crop production and the carbon emission per sowing area are higher in South than North China, with the highest emissions in East and central China and the greatest potential for emission mitigation. In the carbon emission from crop production, CH4 emission from rice fields accounts for the main part (50.3%) and is the focus of emission reduction. The annual carbon emission of crop production in China peaked in 2015, and then dropped down. It was mainly attributed to the decrease trend of rice sown area, agricultural nitrogen application rate, and diesel oil consumption. If the existing agricultural imports are not significantly affected, the carbon emissions in crop production have basically reached the peak. However, it is very difficult to achieve carbon neutrality in crop production if only by soil carbon sequestration of farmland, and it is necessary to consider both farmland emission reduction and carbon sequestration. On the premise of high and stable grain yield, the carbon neutrality of modern crop production should prioritize CH4 and N2O reduction, and fully exploit the integrated carbon sequestration potential of farmland ecosystems, such as straw utilization, combination of the use and protection of farmland, and construction of farmland forest network.

Key words: crop production, food security, climate change, carbon peak, carbon neutrality, carbon sequestration and mitigation

表1

各稻作区稻田CH4排放因子"

区域
Region
单季稻 Single cropping rice 双季早稻 Double cropping early rice 双季晚稻 Double cropping late rice
推荐值
Recommended value
最低值
Min.
最高值
Max.
推荐值
Recommended value
最低值
Min.
最高值
Max.
推荐值
Recommended value
最低值
Min.
最高值
Max.
华北
North China
234 134.4 341.9
华东
East China
215.5 158.2 255.9 211.4 153.1 259.0 224.0 143.4 261.3
华中华南
Central & South China
236.7 170.2 320.1 241.0 169.5 387.2 273.2 185.3 357.9
西南
Southwest China
156.2 75.0 246.5 156.2 73.7 276.6 171.7 75.1 265.1
东北
Northeast China
168.0 112.6 230.3
西北
Northwest China
231.2 175.9 319.5

表2

各农区N2O排放因子"

省(市、区)
Province (municipality and autonomous region)
N2O排放因子
N2O emission factor
范围
Range
内蒙古, 新疆, 甘肃, 青海, 西藏, 陕西, 山西, 宁夏
Inner Mongolia, Xinjiang, Gansu, Qinghai, Tibet, Shaanxi, Shanxi, Ningxia
0.0056 0.0015-0.0085
黑龙江, 吉林, 辽宁
Heilongjiang, Jilin, Liaoning
0.0114 0.0021-0.0258
北京, 天津, 河北, 河南, 山东
Beijing, Tianjin, Hebei, Henan, Shandong
0.0057 0.0014-0.0081
浙江, 上海, 江苏, 安徽, 江西, 湖南, 湖北, 四川, 重庆
Zhejiang, Shanghai, Jiangsu, Anhui, Jiangxi, Hunan, Hubei, Sichuan, Chongqing
0.0109 0.0026-0.0220
广东, 广西, 海南, 福建
Guangdong, Guangxi, Hainan, Fujian
0.0178 0.0046-0.0228
云南, 贵州
Yunnan, Guizhou
0.0106 0.0025-0.0218

图1

我国作物生产碳排放总量的区域特征 地图来源于全国地理信息资源目录服务系统(https://www.webmap.cn/)。a: 作物生产碳排放总量(单位: 万吨CO2-eq); b: 作物单位播种面积碳排放(单位: t CO2-eq hm-2)。"

图2

稻田CH4、农田N2O和柴油CO2排放对作物生产碳排放的贡献"

表3

我国各地区作物生产碳排放占农业碳排放总量的比重"

地区
Region
省(市、区)
Province (municipality and autonomous region)
作物生产碳排放
Carbon emission
in crop production
稻田CH4排放
CH4 emission
in paddy field
农田N2O排放
N2O emission
in farmland
柴油CO2排放
CO2 emission of
diesel oil
华北
North China
北京Beijing 19.6 0.1 12.3 7.2
天津Tianjin 31.0 15.2 11.8 4.0
河北Hebei 39.4 1.8 14.1 23.5
山西Shanxi 23.5 0.1 13.3 10.2
内蒙古Inner Mongolia 14.7 2.4 6.4 5.9
东北
Northeast China
辽宁Liaoning 43.2 12.4 20.4 10.4
吉林Jilin 50.4 17.5 23.6 9.3
黑龙江Heilongjiang 62.1 39.8 12.0 10.3
华东
East China
上海Shanghai 72.3 35.6 13.4 23.3
江苏Jiangsu 80.5 42.9 26.7 10.9
浙江Zhejiang 85.5 27.3 15.5 42.7
安徽Anhui 77.6 48.3 21.9 7.4
福建Fujian 74.7 27.3 29.0 18.4
江西Jiangxi 69.3 59.7 6.9 2.7
山东Shandong 29.9 2.0 14.5 13.4
华中
Central China
河南Henan 36.3 9.9 18.6 7.8
湖北Hubei 63.0 40.3 17.6 5.1
湖南Hunan 61.3 48.9 9.9 2.5
华南
South China
广东Guangdong 72.3 38.5 25.6 8.2
广西Guangxi 58.6 33.0 21.3 4.3
海南Hainan 60.4 26.1 24.9 9.4
西南
Southwest China
重庆Chongqing 49.2 23.2 20.6 5.4
四川Sichuan 30.2 15.6 11.8 2.8
贵州Guizhou 24.1 12.7 9.9 1.5
云南Yunnan 24.5 9.0 13.6 1.9
西藏Tibet 0.8 0.0 0.3 0.5
西北
Northwest China
陕西Shaanxi 46.7 4.9 21.1 20.7
甘肃Gansu 12.0 0.1 5.3 6.6
青海Qinghai 1.7 0 0.6 1.1
宁夏Ningxia 26.7 8.0 8.1 10.6
新疆Xinjiang 21.9 1.7 10.4 9.8
全国China 45.5 22.9 14.7 7.9

图3

我国作物生产碳排放组分的区域差异 地图来源于全国地理信息资源目录服务系统(https://www.webmap.cn/)。a: 稻田甲烷排放(单位: 万吨CO2-eq); b: 农田氧化亚氮排放(单位: 万吨CO2-eq); c: 农用柴油二氧化碳排放(单位: 万吨CO2-eq)。"

图4

我国作物播种面积(a)、氮肥和柴油用量(b)以及各省碳排放(c, d)变化趋势 图a~b中数据来源于国家统计局(2020), 地图来源于全国地理信息资源目录服务系统(https://www.webmap.cn/)。图b中氮肥指纯氮用量。c为2001-2015年作物生产碳排放变化趋势(单位: 万吨CO2-eq 年-1); d为2015-2018年作物生产碳排放变化趋势(单位: 万吨CO2-eq年-1)。"

[1] Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, Kriegler E, Mundaca L, Séférian R, Vilariño M V, Calvin K, de Oliveira de Portugal Pereira J C, Edelenbosch O, Emmerling J, Fuss S, Gasser T, Gillett N, He C, Hertwich E, Höglund-Isaksson L, Huppmann D, Luderer G, Markandya A, McCollum D L, Meinshausen M, Millar R, Popp A, Purohit P, Riahi K, Ribes A, Saunders H, Schädel C, Smith C, Smith P, Trutnevyte E, Xu Y, Zhou W, Zickfeld K. Mitigation pathways compatible with 1.5℃ in the context of sustainable development. In: Global warming of 1.5℃. Intergovernmental Panel on Climate Change, 2018. pp 93-174.
[2] 翟盘茂, 周大地, 杜祥琬, 丁一汇. 碳达峰、碳中和100问. 北京: 人民日报出版社, 2021.
Zhai P M, Zhou D D, Du X W, Ding Y H. 100 Questions About Carbon Peaks, Carbon Neutralization. Beijing: People’s Daily Press, 2021 (in Chinese).
[3] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社. 2020.
State Statistical Bureau. China Statistical Yearbook. Beijing: China Statistics Press, 2020 (in Chinese).
[4] 翟虎渠. 关于中国粮食安全战略的思考. 农业经济问题, 2011,32(9):4-7.
Zhai H Q. Reflection on China’s food security strategy. Issues Agric Econ, 2011,32(9):4-7 (in Chinese with English abstract).
[5] 国务院办公厅. 关于印发中国食物与营养发展纲要(2014-2020年)的通知. [2014-01-28]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201402/t20140208_66624.html.
State Council of the People’s Republic of China. Notice on the Printing and Issuance of China Food and Nutrition Development Outline (2014-2020). [2014-01-28]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201402/t20140208_66624.html.
[6] Lugato E, Leip A, Jones A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat Clim Change, 2018,8:219-223.
[7] 生态环境部应对气候变化司. 中华人民共和国气候变化第三次国家信息通报 [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf.
Department of Climate Change, Ministry of Ecology and Environment. The Third National Communication on Climate Change of the People’s Republic of China [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf.
[8] Devakumar A S, Pardis R, Manjunath V. Carbon footprint of crop cultivation process under semiarid conditions. Agric Res, 2018,7:167-175.
[9] Linquist B, van Groenigen K J, Adviento-Borbe M A, Pittelkow C, van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol, 2012,18:194-209.
[10] Department for Business, Energy & Industrial Strategy of UK. Net Zero Strategy: Build Back Greener. [2021-10-19]. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028157/net-zero-strategy.pdf.
[11] 陈阜, 吴晓春, 王全辉, 张卫建, 尹小刚. 气候智慧型农业的理论与模式. 北京: 中国农业出版社, 2020.
Chen F, Wu X C, Wang Q H, Zhang W J, Yin X G. The Theory and Mode of Climate-Smart Agriculture. Beijing: China Agriculture Press, 2020 (in Chinese).
[12] 张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021,54:3892-3902.
Zhang W J, Yan S J, Zhang J, Jiang Y, Deng A X. Win-win strategy for national food security and agricultural double-carbon goals. Sci Agric Sin, 2021,54:3892-3902 (in Chinese with English abstract).
[13] Amelung W, Bossio D, de Vries W, Kogel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabbi A. Towards a global-scale soil climate mitigation strategy. Nat Commun, 2020,11:5427.
[14] Knapp S, van der Heijden M G A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun, 2018,9:3623.
[15] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012,22(7):21-27.
Min J S, Hu H. Calculation of greenhouse gases emission from agricultural production in china. China Pop Resour Environ, 2012,22(7):21-27 (in Chinese with English abstract).
[16] 邓明君, 邓俊杰, 刘佳宇. 中国粮食作物化肥施用的碳排放时空演变与减排潜力. 资源科学, 2016,38:534-544.
Deng M J, Deng J J, Liu J Y. On the space-time evolution of carbon emissions and reduction potential in Chinese grain crop fertilizer application. Res Sci, 2016,38:534-544 (in Chinese with English abstract).
[17] 柴如山. 我国农田化学氮肥减量与替代的温室气体减排潜力估算. 浙江大学博士学位论文,浙江杭州, 2015.
Chai R S. Estimation of Greenhouse Gases Mitigation Potential under Reduction and Substitution of Synthetic Nitrogen Fertilizer in the Cropland of China. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang,China, 2015 (in Chinese with English abstract).
[18] 李阳, 陈敏鹏. 中国农业源甲烷和氧化亚氮排放的影响因素. 环境科学学报, 2021,41:710-717.
Li Y, Chen M P. Influencing factors of methane and nitrous oxide emissions from agricultural sources in China. Acta Sci Circumst, 2021,41:710-717 (in Chinese with English abstract).
[19] 唐洪松, 马惠兰, 苏洋, 辛冲冲, 汪晶晶. 新疆不同土地利用类型的碳排放与碳吸收. 干旱区研究, 2016,33:486-492.
Tang H S, Ma H L, Su Y, Xin C C, Wang J J. Carbon emissions and carbon absorptions of different land use types in Xinjiang. Arid Zone Res, 2016,33:486-492 (in Chinese with English abstract).
[20] 陈晓芳. 安徽省不同作物化肥施用能耗和碳排放分析. 安徽理工大学硕士学位论文,安徽淮南, 2019.
Chen X F. Energy Consumption and CO2 Emission Analysis from Fertilizer Application on Different Crops in Anhui Province. MS Thesis of Anhui University of Science & Technology, Huainan, Anhui,China, 2019 (in Chinese with English abstract).
[21] 杜杰, 王林林, 谢军红, 彭正凯, 李玲玲. 耕作措施对黄土高原地区农田土壤碳排放影响的Meta分析. 甘肃农业大学学报, 2020,55(3):45-53.
Du J, Wang L L, Xie J H, Peng Z K, Li L L. Effects of different tillage practice on carbon emissions from farmland on the Loess Plateau of China: a meta-analysis. J Gansu Agric Univ, 2020,55(3):45-53 (in Chinese with English abstract).
[22] 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行), 2011. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf.
Department of Climate Change, National Development & Reform Commission of China. Provincial Guidelines for Greenhouse Gas List (Trial). 2011. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf.(in Chinese).
[23] IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006.
[24] 胡向东, 王济民. 中国畜禽温室气体排放量估算. 农业工程学报, 2010,26(10):247-252.
Hu X D, Wang J M. Estimation of livestock greenhouse gases discharge in China. Trans Chin Soc Agric Eng, 2010,26(10):247-252 (in Chinese with English abstract).
[25] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014,20:783-795.
Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China. Plant Nutr Fert Sci, 2014,20:783-795 (in Chinese with English abstract).
[26] 孟远夺, 许发辉, 杨帆, 徐洋, 龚鑫鑫. 我国种植业化肥施用现状与节肥潜力分析. 磷肥与复肥, 2015,30(9):1-4.
Meng Y D, Xu F H, Yang F, Xu Y, Gong X X. Situation of fertilizer application and fertilizer saving potential in crop farming in China. Phos & Comp Fert, 2015,30(9):1-4 (in Chinese with English abstract).
[27] Canadell J G, Schulze E D. Global potential of biospheric carbon management for climate mitigation. Nat Commun, 2014,5:5282.
[28] 徐玉秀. 中国主要作物农田N2O和CH4排放系数及影响因子分析. 沈阳农业大学硕士学位论文,辽宁沈阳, 2016.
Xu Y X. Analyses on Emission Factors and Effect Factors of N2O and CH4 from Main Cropland Soils in China. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning,China, 2016 (in Chinese with English abstract).
[29] Goucher L, Bruce R, Cameron D D, Koh S C L, Horton P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat Plants, 2017,3:17012.
[30] Zhang Y, Jiang Y, Tai A P K, Feng J, Li Z, Zhu X, Chen J, Zhang J, Song Z, Deng A, Lal R, Zhang W. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ Res Lett, 2019,14:114020.
[31] 张卫建, 张艺, 邓艾兴, 张俊. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析. 中国稻米, 2021,27(4):53-57.
Zhang W J, Zhang Y, Deng A X, Zhang J. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China. China Rice, 2021,27(4):53-57 (in Chinese with English abstract).
[32] Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014,514:486-489.
[33] Tian H, Yang J, Xu R, Lu C, Canadell J G, Davidson E A, Jackson R B, Arneth A, Chang J, Ciais P, Gerber S, Ito A, Joos F, Lienert S, Messina P, Olin S, Pan S, Peng C, Saikawa E, Thompson R L, Vuichard N, Winiwarter W, Zaehle S, Zhang B. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob Change Biol, 2019,25:640-659.
[34] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020,39:842-851.
Li Y, Ju X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. J Agro-Environ Sci, 2020,39:842-851 (in Chinese with English abstract).
[35] Chen H, Zheng C, Chen F, Qiao Y, Du S, Cao C, Zhang W. Less N2O emission from newly high-yielding cultivars of winter wheat. Agric Ecosyst Environ, 2021,320:107557.
[36] Afreh D, Zhang J, Guan D, Liu K, Song Z, Zheng C, Deng A, Feng X, Zhang X, Wu Y, Huang Q, Zhang W. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China. Soil Tillage Res, 2018,180:259-267.
[37] Deng A, Chen C, Feng J, Chen J, Zhang W. Cropping system innovation for coping with climatic warming in China. Crop J, 2017,5:136-150.
[38] Jiang Y, Qian H, Huang S, Zhang X, Wang L, Zhang L, Shen M, Xiao X, Chen F, Zhang H, Lu C, Li C, Zhang J, Deng A, van Groenigen K J, Zhang W. Acclimation of methane emissions from rice paddy fields to straw addition. Sci Adv, 2019, 5: eaau9038.
[39] 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016,27:453-461.
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in northeast China. Chin J Appl Ecol, 2016,27:453-461 (in Chinese with English abstract).
[40] Zhu X, Zhang J, Zhang Z, Deng A, Zhang W. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur J Agron, 2016,75:50-59.
[41] Abdulkareem R. 绿肥还田对双季稻系统温室气体排放及其相关土壤微生物的影响. 中国农业科学院博士学位论文,北京, 2020.
Abdulkareem R. Effects of Green Manure on Greenhouse Gas Emissions and Relevant Soil Microbial Community in Double Rice Cropping System. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2020 (in Chinese with English abstract).
[42] Kan Z R, Liu W X, Liu W S, Lal R, Dang Y P, Zhao X, Zhang H L. Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective. Glob Change Biol, 2021, doi: 10.1111/gcb.1596.
[43] Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger P, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B eds. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021.
[1] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[2] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830.
[3] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[4] 赵明,周宝元,马玮,李从锋,丁在松,孙雪芳. 粮食作物生产系统定量调控理论与技术模式[J]. 作物学报, 2019, 45(4): 485-498.
[5] 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795.
[6] 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703.
[7] 王萌萌,杨沈斌,江晓东,王应平,陈德,黄维,于庚康,石春林. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 2016, 42(01): 82-92.
[8] 艾治勇,郭夏宇,刘文祥,马国辉,青先国. 长江中游地区双季稻安全生产日期的变化[J]. 作物学报, 2014, 40(07): 1320-1329.
[9] 李志杰,张振平,张艺,邓艾兴,宋振伟,郑成岩,张卫建. 辽宁不同年代水稻品种生产力和氮肥效率对施氮水平的响应差异[J]. 作物学报, 2013, 39(09): 1679-1686.
[10] 江敏,金之庆,石春林,林文雄. 福建省基于自适应调整的水稻生产对未来气候变化的响应[J]. 作物学报, 2012, 38(12): 2246-2257.
[11] 钱春荣,于洋,宫秀杰,姜宇博,赵杨,郝玉波,李梁,张卫建. 黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(11): 2069-2077.
[12] 钱春荣,于洋,宫秀杰,姜宇博,赵杨,王俊河,杨忠良,张卫建. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864-1874.
[13] 李克南,杨晓光,刘园,荀欣,刘志娟,王静,吕硕,王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素[J]. 作物学报, 2012, 38(08): 1483-1493.
[14] 杨沈斌,申双和,赵小艳,赵艳霞,许吟隆,王主玉,刘娟,张玮玮. 气候变化对长江中下游稻区水稻产量的影响[J]. 作物学报, 2010, 36(09): 1519-1528.
[15] 刘月华,陈源泉,朱敏,曲波,隋鹏,高旺盛. 海河低平原区杨农复合模式内作物生产力与生态因子的关系[J]. 作物学报, 2010, 36(08): 1355-1361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!