作物学报 ›› 2022, Vol. 48 ›› Issue (4): 930-941.doi: 10.3724/SP.J.1006.2022.12073
严圣吉1(), 邓艾兴1, 尚子吟1, 唐志伟1, 陈长青3, 张俊1,2,*(), 张卫建1,2,*()
YAN Sheng-Ji1(), DENG Ai-Xing1, SHANG Zi-Yin1, TANG Zhi-Wei1, CHEN Chang-Qing3, ZHANG Jun1,2,*(), ZHANG Wei-Jian1,2,*()
摘要:
作物生产不仅保障了国家粮食安全, 也是农业碳排放的主要源, 以及碳固定的重要汇。阐明主要农区作物生产碳排放特征, 探讨其达峰与中和途径, 可以为全国及地方作物生产绿色高质量发展和农业“双碳”目标的战略制定提供重要科学依据。本文基于国家统计数据, 比较分析了我国各地区作物生产碳排放特征, 探讨了助力碳中和的农田减排固碳途径。2018年我国作物生产碳排放占全国农业碳排放总量45.5%, 其中农田甲烷(CH4)、氧化亚氮(N2O)以及农用柴油消费的二氧化碳(CO2)排放分别占农业碳排放总量的22.9%、14.7%和7.9%。从区域排放来看, 作物生产碳排放总量和单位播种面积排放量均呈现南高北低特征, 其中以华东和华中地区最高, 减排潜力大。在作物生产碳排放中, 稻田CH4占50.3%, 是减排重点。我国作物生产碳排放总量于2015年出现峰值, 之后呈现下降趋势, 这与水稻播种面积、农田氮肥用量和农用柴油消费等减少趋势相一致。可见, 如果我国农产品进口不受显著影响, 作物生产碳排放已经呈现达峰趋势。情景推算发现, 仅靠农地土壤固碳很难实现作物生产的碳中和, 需要农田减排与固碳的兼顾。在丰产稳产前提下, 作物生产碳中和要以稻田CH4和旱地N2O减排优先, 在增强土壤碳汇功能的同时, 充分挖掘秸秆资源化利用、用地养地结合和农田林网建设等农田生态系统的综合固碳潜力。
[1] | Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, Kriegler E, Mundaca L, Séférian R, Vilariño M V, Calvin K, de Oliveira de Portugal Pereira J C, Edelenbosch O, Emmerling J, Fuss S, Gasser T, Gillett N, He C, Hertwich E, Höglund-Isaksson L, Huppmann D, Luderer G, Markandya A, McCollum D L, Meinshausen M, Millar R, Popp A, Purohit P, Riahi K, Ribes A, Saunders H, Schädel C, Smith C, Smith P, Trutnevyte E, Xu Y, Zhou W, Zickfeld K. Mitigation pathways compatible with 1.5℃ in the context of sustainable development. In: Global warming of 1.5℃. Intergovernmental Panel on Climate Change, 2018. pp 93-174. |
[2] | 翟盘茂, 周大地, 杜祥琬, 丁一汇. 碳达峰、碳中和100问. 北京: 人民日报出版社, 2021. |
Zhai P M, Zhou D D, Du X W, Ding Y H. 100 Questions About Carbon Peaks, Carbon Neutralization. Beijing: People’s Daily Press, 2021 (in Chinese). | |
[3] | 国家统计局. 中国统计年鉴. 北京: 中国统计出版社. 2020. |
State Statistical Bureau. China Statistical Yearbook. Beijing: China Statistics Press, 2020 (in Chinese). | |
[4] | 翟虎渠. 关于中国粮食安全战略的思考. 农业经济问题, 2011,32(9):4-7. |
Zhai H Q. Reflection on China’s food security strategy. Issues Agric Econ, 2011,32(9):4-7 (in Chinese with English abstract). | |
[5] | 国务院办公厅. 关于印发中国食物与营养发展纲要(2014-2020年)的通知. [2014-01-28]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201402/t20140208_66624.html. |
State Council of the People’s Republic of China. Notice on the Printing and Issuance of China Food and Nutrition Development Outline (2014-2020). [2014-01-28]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201402/t20140208_66624.html. | |
[6] | Lugato E, Leip A, Jones A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat Clim Change, 2018,8:219-223. |
[7] | 生态环境部应对气候变化司. 中华人民共和国气候变化第三次国家信息通报 [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf. |
Department of Climate Change, Ministry of Ecology and Environment. The Third National Communication on Climate Change of the People’s Republic of China [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf. | |
[8] | Devakumar A S, Pardis R, Manjunath V. Carbon footprint of crop cultivation process under semiarid conditions. Agric Res, 2018,7:167-175. |
[9] | Linquist B, van Groenigen K J, Adviento-Borbe M A, Pittelkow C, van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol, 2012,18:194-209. |
[10] | Department for Business, Energy & Industrial Strategy of UK. Net Zero Strategy: Build Back Greener. [2021-10-19]. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028157/net-zero-strategy.pdf. |
[11] | 陈阜, 吴晓春, 王全辉, 张卫建, 尹小刚. 气候智慧型农业的理论与模式. 北京: 中国农业出版社, 2020. |
Chen F, Wu X C, Wang Q H, Zhang W J, Yin X G. The Theory and Mode of Climate-Smart Agriculture. Beijing: China Agriculture Press, 2020 (in Chinese). | |
[12] | 张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021,54:3892-3902. |
Zhang W J, Yan S J, Zhang J, Jiang Y, Deng A X. Win-win strategy for national food security and agricultural double-carbon goals. Sci Agric Sin, 2021,54:3892-3902 (in Chinese with English abstract). | |
[13] | Amelung W, Bossio D, de Vries W, Kogel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabbi A. Towards a global-scale soil climate mitigation strategy. Nat Commun, 2020,11:5427. |
[14] | Knapp S, van der Heijden M G A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun, 2018,9:3623. |
[15] | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012,22(7):21-27. |
Min J S, Hu H. Calculation of greenhouse gases emission from agricultural production in china. China Pop Resour Environ, 2012,22(7):21-27 (in Chinese with English abstract). | |
[16] | 邓明君, 邓俊杰, 刘佳宇. 中国粮食作物化肥施用的碳排放时空演变与减排潜力. 资源科学, 2016,38:534-544. |
Deng M J, Deng J J, Liu J Y. On the space-time evolution of carbon emissions and reduction potential in Chinese grain crop fertilizer application. Res Sci, 2016,38:534-544 (in Chinese with English abstract). | |
[17] | 柴如山. 我国农田化学氮肥减量与替代的温室气体减排潜力估算. 浙江大学博士学位论文,浙江杭州, 2015. |
Chai R S. Estimation of Greenhouse Gases Mitigation Potential under Reduction and Substitution of Synthetic Nitrogen Fertilizer in the Cropland of China. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang,China, 2015 (in Chinese with English abstract). | |
[18] | 李阳, 陈敏鹏. 中国农业源甲烷和氧化亚氮排放的影响因素. 环境科学学报, 2021,41:710-717. |
Li Y, Chen M P. Influencing factors of methane and nitrous oxide emissions from agricultural sources in China. Acta Sci Circumst, 2021,41:710-717 (in Chinese with English abstract). | |
[19] | 唐洪松, 马惠兰, 苏洋, 辛冲冲, 汪晶晶. 新疆不同土地利用类型的碳排放与碳吸收. 干旱区研究, 2016,33:486-492. |
Tang H S, Ma H L, Su Y, Xin C C, Wang J J. Carbon emissions and carbon absorptions of different land use types in Xinjiang. Arid Zone Res, 2016,33:486-492 (in Chinese with English abstract). | |
[20] | 陈晓芳. 安徽省不同作物化肥施用能耗和碳排放分析. 安徽理工大学硕士学位论文,安徽淮南, 2019. |
Chen X F. Energy Consumption and CO2 Emission Analysis from Fertilizer Application on Different Crops in Anhui Province. MS Thesis of Anhui University of Science & Technology, Huainan, Anhui,China, 2019 (in Chinese with English abstract). | |
[21] | 杜杰, 王林林, 谢军红, 彭正凯, 李玲玲. 耕作措施对黄土高原地区农田土壤碳排放影响的Meta分析. 甘肃农业大学学报, 2020,55(3):45-53. |
Du J, Wang L L, Xie J H, Peng Z K, Li L L. Effects of different tillage practice on carbon emissions from farmland on the Loess Plateau of China: a meta-analysis. J Gansu Agric Univ, 2020,55(3):45-53 (in Chinese with English abstract). | |
[22] | 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行), 2011. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf. |
Department of Climate Change, National Development & Reform Commission of China. Provincial Guidelines for Greenhouse Gas List (Trial). 2011. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf.(in Chinese). | |
[23] | IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. |
[24] | 胡向东, 王济民. 中国畜禽温室气体排放量估算. 农业工程学报, 2010,26(10):247-252. |
Hu X D, Wang J M. Estimation of livestock greenhouse gases discharge in China. Trans Chin Soc Agric Eng, 2010,26(10):247-252 (in Chinese with English abstract). | |
[25] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014,20:783-795. |
Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China. Plant Nutr Fert Sci, 2014,20:783-795 (in Chinese with English abstract). | |
[26] | 孟远夺, 许发辉, 杨帆, 徐洋, 龚鑫鑫. 我国种植业化肥施用现状与节肥潜力分析. 磷肥与复肥, 2015,30(9):1-4. |
Meng Y D, Xu F H, Yang F, Xu Y, Gong X X. Situation of fertilizer application and fertilizer saving potential in crop farming in China. Phos & Comp Fert, 2015,30(9):1-4 (in Chinese with English abstract). | |
[27] | Canadell J G, Schulze E D. Global potential of biospheric carbon management for climate mitigation. Nat Commun, 2014,5:5282. |
[28] | 徐玉秀. 中国主要作物农田N2O和CH4排放系数及影响因子分析. 沈阳农业大学硕士学位论文,辽宁沈阳, 2016. |
Xu Y X. Analyses on Emission Factors and Effect Factors of N2O and CH4 from Main Cropland Soils in China. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning,China, 2016 (in Chinese with English abstract). | |
[29] | Goucher L, Bruce R, Cameron D D, Koh S C L, Horton P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat Plants, 2017,3:17012. |
[30] | Zhang Y, Jiang Y, Tai A P K, Feng J, Li Z, Zhu X, Chen J, Zhang J, Song Z, Deng A, Lal R, Zhang W. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ Res Lett, 2019,14:114020. |
[31] | 张卫建, 张艺, 邓艾兴, 张俊. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析. 中国稻米, 2021,27(4):53-57. |
Zhang W J, Zhang Y, Deng A X, Zhang J. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China. China Rice, 2021,27(4):53-57 (in Chinese with English abstract). | |
[32] | Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014,514:486-489. |
[33] | Tian H, Yang J, Xu R, Lu C, Canadell J G, Davidson E A, Jackson R B, Arneth A, Chang J, Ciais P, Gerber S, Ito A, Joos F, Lienert S, Messina P, Olin S, Pan S, Peng C, Saikawa E, Thompson R L, Vuichard N, Winiwarter W, Zaehle S, Zhang B. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob Change Biol, 2019,25:640-659. |
[34] | 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020,39:842-851. |
Li Y, Ju X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. J Agro-Environ Sci, 2020,39:842-851 (in Chinese with English abstract). | |
[35] | Chen H, Zheng C, Chen F, Qiao Y, Du S, Cao C, Zhang W. Less N2O emission from newly high-yielding cultivars of winter wheat. Agric Ecosyst Environ, 2021,320:107557. |
[36] | Afreh D, Zhang J, Guan D, Liu K, Song Z, Zheng C, Deng A, Feng X, Zhang X, Wu Y, Huang Q, Zhang W. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China. Soil Tillage Res, 2018,180:259-267. |
[37] | Deng A, Chen C, Feng J, Chen J, Zhang W. Cropping system innovation for coping with climatic warming in China. Crop J, 2017,5:136-150. |
[38] | Jiang Y, Qian H, Huang S, Zhang X, Wang L, Zhang L, Shen M, Xiao X, Chen F, Zhang H, Lu C, Li C, Zhang J, Deng A, van Groenigen K J, Zhang W. Acclimation of methane emissions from rice paddy fields to straw addition. Sci Adv, 2019, 5: eaau9038. |
[39] | 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016,27:453-461. |
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in northeast China. Chin J Appl Ecol, 2016,27:453-461 (in Chinese with English abstract). | |
[40] | Zhu X, Zhang J, Zhang Z, Deng A, Zhang W. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur J Agron, 2016,75:50-59. |
[41] | Abdulkareem R. 绿肥还田对双季稻系统温室气体排放及其相关土壤微生物的影响. 中国农业科学院博士学位论文,北京, 2020. |
Abdulkareem R. Effects of Green Manure on Greenhouse Gas Emissions and Relevant Soil Microbial Community in Double Rice Cropping System. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2020 (in Chinese with English abstract). | |
[42] | Kan Z R, Liu W X, Liu W S, Lal R, Dang Y P, Zhao X, Zhang H L. Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective. Glob Change Biol, 2021, doi: 10.1111/gcb.1596. |
[43] | Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger P, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B eds. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. |
[1] | 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231. |
[2] | 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. |
[3] | 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415. |
[4] | 赵明,周宝元,马玮,李从锋,丁在松,孙雪芳. 粮食作物生产系统定量调控理论与技术模式[J]. 作物学报, 2019, 45(4): 485-498. |
[5] | 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795. |
[6] | 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703. |
[7] | 王萌萌,杨沈斌,江晓东,王应平,陈德,黄维,于庚康,石春林. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 2016, 42(01): 82-92. |
[8] | 艾治勇,郭夏宇,刘文祥,马国辉,青先国. 长江中游地区双季稻安全生产日期的变化[J]. 作物学报, 2014, 40(07): 1320-1329. |
[9] | 李志杰,张振平,张艺,邓艾兴,宋振伟,郑成岩,张卫建. 辽宁不同年代水稻品种生产力和氮肥效率对施氮水平的响应差异[J]. 作物学报, 2013, 39(09): 1679-1686. |
[10] | 江敏,金之庆,石春林,林文雄. 福建省基于自适应调整的水稻生产对未来气候变化的响应[J]. 作物学报, 2012, 38(12): 2246-2257. |
[11] | 钱春荣,于洋,宫秀杰,姜宇博,赵杨,郝玉波,李梁,张卫建. 黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(11): 2069-2077. |
[12] | 钱春荣,于洋,宫秀杰,姜宇博,赵杨,王俊河,杨忠良,张卫建. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864-1874. |
[13] | 李克南,杨晓光,刘园,荀欣,刘志娟,王静,吕硕,王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素[J]. 作物学报, 2012, 38(08): 1483-1493. |
[14] | 杨沈斌,申双和,赵小艳,赵艳霞,许吟隆,王主玉,刘娟,张玮玮. 气候变化对长江中下游稻区水稻产量的影响[J]. 作物学报, 2010, 36(09): 1519-1528. |
[15] | 刘月华,陈源泉,朱敏,曲波,隋鹏,高旺盛. 海河低平原区杨农复合模式内作物生产力与生态因子的关系[J]. 作物学报, 2010, 36(08): 1355-1361. |
|