欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1516-1526.doi: 10.3724/SP.J.1006.2022.11038

• 耕作栽培·生理生化 • 上一篇    下一篇

不同硒形态和施硒方式对小麦硒吸收利用的影响及残效

黄婷苗1,2(), 于荣1, 王朝辉1,*(), 黄冬琳1, 王森1, 靳静静1   

  1. 1西北农林科技大学资源环境学院, 陕西杨凌 712100
    2山西农业大学农学院, 山西太谷 030801
  • 收稿日期:2021-04-04 接受日期:2021-06-16 出版日期:2022-06-12 网络出版日期:2021-07-15
  • 通讯作者: 王朝辉
  • 作者简介:E-mail: huangtingmiao@126.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-03);国家重点研发计划项目(2018YFD0200400);山西农业大学科技创新基金项目(2020BQ72)

Effects of different forms and application methods of selenium fertilizers on wheat selenium uptake and utilization and its residual availability

HUANG Ting-Miao1,2(), YU Rong1, WANG Zhao-Hui1,*(), HUANG Dong-Lin1, WANG Sen1, JIN Jing-Jing1   

  1. 1College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2021-04-04 Accepted:2021-06-16 Published:2022-06-12 Published online:2021-07-15
  • Contact: WANG Zhao-Hui
  • Supported by:
    China Agriculture Research System(CARS-03);National Key Research and Development Program of China(2018YFD0200400);Science and Technology Innovation Fund Program by Shanxi Agricultural University(2020BQ72)

摘要:

为了确定改善小麦硒营养的硒肥调控措施, 分析不同施硒方法对小麦硒农艺强化的可行性, 在陕西永寿典型缺硒土壤上开展2年定位试验。第1年, 以生产硒含量100 μg kg -1的小麦籽粒为最低目标, 设置不施硒、土施硒酸钠、叶喷硒酸钠、土施亚硒酸钠、叶喷亚硒酸钠5个处理, 用量分别为0、15、18、700、45 g Se hm-2, 研究不同硒价态和施硒方式对小麦产量、硒含量、硒吸收利用的影响, 第2年各小区一分为二, 一半秸秆移出, 一半秸秆还田, 不再施硒, 研究硒肥残效。结果表明, 不同硒价态和施硒方式对小麦籽粒产量、秸秆生物量无影响。第1年, 各施硒处理的籽粒硒含量均达到预期目标, 介于109~397 μg kg -1, 面粉硒含量介于101~356 μg kg -1。第2年, 仅土施亚硒酸钠的籽粒、面粉硒含量高于100 μg kg -1, 秸秆还田和不还田间无差异。土施、叶喷硒酸钠和土施、叶喷亚硒酸钠的籽粒硒强化指数分别为4.7、16、0.3、8.0 (μg kg-1) (g hm-2)-1。叶喷硒酸钠的硒肥当季利用率最高, 为7.3%; 土施亚硒酸钠的硒肥累计利用率仅0.3%, 但后效长, 第2季小麦收获后, 土壤有效硒含量最高, 秸秆不还田和还田条件下分别为91 μg kg -1和107 μg kg -1。综上所述, 黄土高原缺硒区, 土施、叶喷一定量的硒酸钠或亚硒酸钠, 均有利于目标硒营养的小麦生产, 土施亚硒酸钠的需用量大, 生产中应关注其后效, 选择适宜的施硒方式和用量, 实现小麦硒强化。

关键词: 硒酸钠, 亚硒酸钠, 土施, 叶喷, 硒肥利用率, 硒残效

Abstract:

A two-year positioning field experiment was conducted to determine the reasonable regulation measures of selenium (Se) fertilizer for improving wheat grain Se nutrition, and to explore the feasibilities of different Se application approaches in Se agronomic biofortification of wheat grown in the typical Se-deficient soils of Yongshou County, Shaanxi Province. To study the effects of different forms and application methods of Se fertilizers on wheat yield, Se concentration and its accumulation and utilization, with the goal of producing wheat grain with Se concentration of 100 μg kg -1, five Se application rates of 0, 15, 18, 700, and 45 g hm-2 were calculated for the treatments of no Se application (control), soil- and foliar-sodium selenate, and soil- and foliar-sodium selenite in the first year, respectively. In the following wheat season, for further investigating the residual Se availability, no Se fertilizer was applied and each plot was divided into straw removal and straw return. These results showed that the wheat grain yield and straw biomass were not influenced by Se forms and application methods. For the first wheat season, grain Se concentration reached the expected target value with a range of 109-397 μg kg -1, and the flour Se concentration varied from 101 μg kg -1 to 356 μg kg -1 for all the Se application treatments. In the next year, both grain and white flour Se concentrations were 100 μg kg -1 higher than under the treatment of soil-sodium selenite, and there was no significant difference of straw removal and straw return. Grain Se biofortification index was 4.7, 16, 0.3, 8.0 (μg kg-1) (g hm-2)-1 for soil- and foliar-sodium selenate, and soil- and foliar-sodium selenite, respectively. The Se use efficiency was the highest for foliar-sodium selenate (7.3%), whereas its cumulative use efficiency was only 0.3% in soil-sodium selenite treatment with the long-term residue effects. At wheat harvest, the highest soil available Se was observed for soil-sodium selenite, with 91 μg kg -1 and 107 μg kg -1 for the straw removal and straw return, respectively. In conclusion, both soil- and foliar-sodium selenate /selenite were beneficial for producing wheat grain with target Se concentration of 100 μg kg -1, and the sodium selenite requirement was the highest, and its residual availability should be taken into consideration for Se biofortification in wheat production in the Se-deficient area of Chinese Loess Plateau.

Key words: sodium selenate, sodium selenite, soil application, foliar application, Se use efficiency, residual Se availability

表1

2012年小麦播前0~20 cm土层土壤基本理化性质"

项目 Item 数值或含量 Value or content
pH 8.66
有机质OM (g kg-1) 12.7
全氮Total N (g kg-1) 0.88
硝态氮NO3--N (mg kg-1) 2.90
铵态氮NH4+-N (mg kg-1) 1.06
有效磷 Olsen-P (mg kg-1) 11.2
速效钾 NH4OAc-K (mg kg-1) 130
总硒Total Se (mg kg-1) 0.120
有效硒 Available Se (μg kg-1) 19.7

图1

不同价态硒和施硒方式的小麦籽粒产量、秸秆生物量及残效"

表2

不同价态硒和施硒方式的小麦籽粒、秸秆、面粉、麸皮硒含量及残效"

处理
Treatment
籽粒硒含量Grain Se concentration 秸秆硒含量Straw Se concentration
2012-2013 2013-2014 2012-2013 2013-2014
秸秆不还田
Straw removal
秸秆还田
Straw return
秸秆不还田
Straw removal
秸秆还田
Straw return
对照 CK 38 d 20 c 19 c 46 e 9 c 8 c
土施硒酸钠 S-Na2SeO4 109 c 23 c 30 bc 98 d 20 b 24 b
叶喷硒酸钠 F-Na2SeO4 320 b 32 b 29 bc 286 b 24 b 51 a
土施亚硒酸钠 S-Na2SeO3 256 b 110 a 113 a 158 c 56 a 53 a
叶喷亚硒酸钠 F-Na2SeO3 397 a 26 bc 32 b 507 a 28 b 20 b
处理
Treatment
面粉硒含量Se concentration in white flour 麸皮硒含量Se concentration in barn
2012-2013 2013-2014 2012-2013 2013-2014
秸秆不还田
Straw removal
秸秆还田
Straw return
秸秆不还田
Straw removal
秸秆还田
Straw return
对照 CK 36 d 21 c 19 b 45 e 15 c 18 b
土施硒酸钠 S-Na2SeO4 101 c 24 bc 30 b 134 d 20 bc 29 b
叶喷硒酸钠 F-Na2SeO4 288 b 33 b 29 b 417 b 31 b 25 b
土施亚硒酸钠 S-Na2SeO3 247 b 109 a 116 a 283 c 114 a 101 a
叶喷亚硒酸钠 F-Na2SeO3 356 a 27 bc 35 b 520 a 24 bc 23 b

图2

不同价态硒和施硒方式的小麦地上部硒积累、分配及残效 同一器官不同小写字母表示处理间差异达0.05显著水平。"

图3

不同价态硒和施硒方式的小麦籽粒硒积累、分配及残效 同一器官不同小写字母表示处理间差异达0.05显著水平。"

图4

不同价态硒和施硒方式的小麦籽粒、面粉硒强化指数(2012-2013年) 不同小写字母表示处理间差异达0.05显著水平。"

图5

不同价态硒和施硒方式的小麦硒肥利用率 不同小写字母表示处理间差异达0.05显著水平。"

图6

种植两季小麦后不同价态硒和施硒方式的0~20 cm土层土壤有效硒 不同小写字母表示处理间差异达0.05显著水平。"

[1] Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179: 588-590.
pmid: 4686466
[2] Mangiapane E, Pessione A, Pessione E. Selenium and selenoproteins: an overview on different biological systems. Curr Protein Pept Sci, 2014, 15: 598-607.
doi: 10.2174/1389203715666140608151134
[3] Tan L C, Nancharaiah Y V, van Hullebusch E D, Lens P N L. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv, 2016, 34: 886-907.
doi: 10.1016/j.biotechadv.2016.05.005
[4] 常继乐, 王宁. 中国居民营养与健康状况检测2010-2013年综合报告. 北京: 北京大学医学出版社, 2016.
Chang J L, Wang N. Comprehensive Report on the Monitoring of Nutrition and Health Status of Chinese Residents 2010-2013. Beijing: Peking University Medical Publishing House, 2016 (in Chinese)
[5] 中国营养学会. 中国居民膳食营养素参考摄入量(2013版). 北京: 科学出版社, 2014.
Chinese Society of Nutrition. Reference Intake of Dietary Nutrients for Chinese Residents (2013 edn). Beijing: Science Press, 2014 (in Chinese).
[6] Tan J, Huang Y. Selenium in geo-ecosystem and its relation to endemic diseases in China. Water Air Soil Pollut, 1991, 57: 59-68.
[7] Gissel-Nielsen G, Gupta U C, Lamand M, Westermarck T. Selenium in soils and plants and its importance in livestock and human nutrition. In: Advances in Agronomy, Volume 37, 1984. pp 397-460.
[8] 刘慧, 杨月娥, 王朝辉, 李富翠, 李可懿, 杨宁, 王森, 王慧, 何刚, 戴健. 中国不同麦区小麦籽粒硒的含量及调控. 中国农业科学, 2016, 49: 1715-1728.
Liu H, Yang Y E, Wang Z H, Li F C, Li K Y, Yang N, Wang S, Wang H, He G, Dai J. Selenium content of wheat grain and its regulation in different wheat production regions of China. Sci Agric Sin, 2016, 49: 1715-1728 (in Chinese with English abstract).
[9] Jones G D, Droz B, Greve P, Gottschalk P, Poffet D, McGrath S P, Seneviratne S I, Smith P, Winkel L H. Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci USA, 2017, 114: 2848-2853.
doi: 10.1073/pnas.1611576114
[10] Mao H, Wang J W, Wang Z H, Zan Y L, Lyons G, Zou C Q. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J Soil Sci Plant Nut, 2014, 14: 459-470.
[11] Wang M, Ali F, Qi M X, Peng Q, Wang M K, Bañuelos G S, Miao S Y, Li Z, Dinh Q T, Liang D L. Insights into uptake, accumulation, and subcellular distribution of selenium among eight wheat (Triticum aestivum L.) cultivars supplied with selenite and selenate. Ecotox Environ Safe, 2021, 207: 111544.
doi: 10.1016/j.ecoenv.2020.111544
[12] 陈思杨, 江荣风, 李花粉. 苗期小麦和水稻对硒酸盐/亚硒酸盐的吸收及转运机制. 环境科学, 2011, 32: 284-289.
Chen S Y, Jiang R F, Li H F. Uptake and translocation of selenate or selenite by wheat and rice seedlings. Environ Sci, 2011, 32: 284-289 (in Chinese with English abstract).
[13] Ali F, Peng Q, Wang D, Cui Z, Huang J, Fu D, Liang D. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.). Environ Sci Pollut Res Int, 2017, 24: 8315-8325.
doi: 10.1007/s11356-017-8512-9
[14] Broadley M R, White P J, Bryson R J, Meacham M C, Bowen H C, Johnson S E, Hawkesford M J, McGrath S P, Zhao F J, Breward N, Harriman M, Tucker M. Biofortification of UK food crops with selenium. Proc Nutr Soc, 2006, 65: 169-181.
doi: 10.1079/PNS2006490
[15] Wang J W, Wang Z H, Mao H, Zhao H B, Huang D L. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Res, 2013, 150: 83-90.
doi: 10.1016/j.fcr.2013.06.010
[16] 胡华锋, 刘太宇, 郭孝, 介晓磊, 胡承孝, 李明, 鲁剑巍, 赵京. 基施硒肥对不同生育期紫花苜蓿吸收、转化及利用硒的影响. 草地学报, 2015, 23, 101-106.
Hu H F, Liu T Y, Guo X, Jie X L, Hu X C, Li M, Lu J W, Zhao J. Effects of Se as basal fertilizer on the selenium absorption, conversion and utilization of alfalfa at different growth stages. Acta Agrest Sin, 2015, 23: 101-106 (in Chinese with English abstract).
[17] Schiavon M, Nardi S, Dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil, 2020, 3: 1-26.
doi: 10.1007/BF01343394
[18] Broadley M R, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait S J, Hart D J, Hurst R, Knott P, McGrath S P, Meacham M C, Norman K, Mowat H, Scott P, Stroud J L, Tovey M, Tucker M, White P J, Young S D, Zhao F J. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilization. Plant Soil, 2009, 332: 5-18.
doi: 10.1007/s11104-009-0234-4
[19] Wang Q, Yu Y, Li J, Wan Y, Huang Q, Guo Y, Li H. Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat-summer maize rotation system. J Agric Food Chem, 2017, 65: 1116-1123.
doi: 10.1021/acs.jafc.6b05149
[20] 鲍士旦, 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000 (in Chinese)
[21] 吴雄平, 鲍俊丹, 伊田, 薛瑞玲, 梁东丽. 石灰性土壤有效硒浸提剂和浸提条件研究. 农业环境科学学报, 2009, 28: 931-936.
Wu X P, Bao J D, Yin T, Xue R L, Liang D L. Extractants and optimum extracting conditions of soil available selenium in calcareous soil. J Agro-Environ Sci, 2009, 28: 931-936 (in Chinese with English abstract)
[22] Manojlović M S, Lončarić Z, Cabilovski R R, Popović B, Karalić K, Ivezić V, Ademi A, Singh B R. Biofortification of wheat cultivars with selenium. Soil Plant Sci, 2019, 69: 715-724.
[23] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42: 778-783.
doi: 10.3724/SP.J.1006.2016.00778
Liu Q, Tian X, Shi Y X. Effects of Se application on Se accumulation and transformation and content of gross protein and mineral elements in wheat grain. Acta Agron Sin, 2016, 42: 778-783 (in Chinese with English abstract).
[24] 田秀英, 王正银. 硒对苦荞产量、营养与保健品质的影响. 作物学报, 2008, 34: 1266-1272.
Tian X Y, Wang Z Y. Effect of selenium application on yield and qualities for nutrition and health care in Tartary buckwheat. Acta Agron Sin, 2008, 34: 1266-1272 (in Chinese with English abstract)
[25] 张城铭, 周鑫斌. 不同施硒方式对水稻硒利用效率的影响. 土壤学报, 2019, 56: 186-194.
Zhang C M, Zhou X B. Effects of different selenium application methods on Se utilization efficiency of rice. Acta Pedol Sin, 2019, 56: 186-194 (in Chinese with English abstract).
[26] 穆婷婷, 杜慧玲, 张福耀, 景小兰, 郭琦, 李志华, 刘璋, 田岗. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50: 51-63.
Mu T T, Du H L, Zhang F Y, Jing X L, Guo Q, Li Z H, Liu Z, Tian G. Effects of exogenous selenium on the physiological activity, grain selenium content, yield and quality of foxtail millet. Sci Agric Sin, 2017, 50: 51-63 (in Chinese with English abstract).
[27] Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K. Biofortification of edible plants with selenium and iodine—a systematic literature review. Sci Total Environ, 2021, 754: 141983.
doi: 10.1016/j.scitotenv.2020.141983
[28] Luo H, He L, Du B, Pan S, Mo Z, Duan M, Tian H, Tang X. Biofortification with chelating selenium in fragrant rice: effects on photosynthetic rates, aroma, grain quality and yield formation. Field Crops Res, 2020, 255: 107909.
doi: 10.1016/j.fcr.2020.107909
[29] Idrees M, Cheema S A, Farooq M, Wakeel A. Selenium nutrition for yield enhancement and grain biofortification of wheat through different application methods. Int J Agric Biol, 2018, 20: 1701-1709.
[30] 薛瑞玲, 梁东丽, 王松山, 付冬冬, 段曼莉, 徐梦. 外源亚硒酸盐和硒酸盐在土壤中的价态转化及其生物有效性. 环境科学, 2011, 32: 1726-1733.
Xue R L, Liang D L, Wang S S, Fu D D, Duan M L, Xu M. Valence state changes and bioavailability of selenium in soil treated with selenite and selenate. Environ Sci, 2011, 32: 1726-1733 (in Chinese with English abstract).
[31] Hopper J L, Parker D R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil, 1999, 210: 199-207.
doi: 10.1023/A:1004639906245
[32] Zhang L H, Hu B, Li W, Che R H, Deng K, Li H, Yu F Y, Ling H L, Li Y J, Chu C C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol, 2014, 201: 1183-1191.
doi: 10.1111/nph.2014.201.issue-4
[33] Lyons G, Stangoulis J, Graham R. High-selenium wheat: biofortification for better health. Nutr Res Rev, 2003, 16: 45-60.
doi: 10.1079/NRR200255 pmid: 19079936
[34] Zou C Q, Du Y F, Rashid A, Ram H, Savasli E, Pieterse P J, Ortiz-Monasterio I, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux M R, Kuang W, Onder O, Kalayci M, Cakmak I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem, 2019, 67: 8096-8106.
doi: 10.1021/acs.jafc.9b01829
[35] De Feudis M, D’Amato R, Businelli D, Guiducci M. Fate of selenium in soil: a case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Sci Total Environ, 2019, 659: 131-139.
doi: 10.1016/j.scitotenv.2018.12.200
[36] Li Z, Liang D, Peng Q, Cui Z, Huang J, Lin Z. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma, 2017, 295: 69-79.
doi: 10.1016/j.geoderma.2017.02.019
[37] 付冬冬, 王松山, 梁东丽, 缪树寅, 段曼莉, 胡斌. 不同价态外源硒对冬小麦生长及生理代谢的影响. 农业环境科学学报, 2011, 30: 1500-1507.
Fu D D, Wang S S, Liang D L, Miao S Y, Duan M L, Hu B. Effects of exogenetic selenite and selenate on the growth and physiological metabolism of winter wheat. J Agro-Environ Sci, 2011, 30: 1500-1507 (in Chinese with English abstract).
[38] Chilimba A D C, Young S D, Black C R, Meacham M C, Lammel J, Broadley M R. Assessing residual availability of selenium applied to maize crops in Malawi. Field Crops Res, 2012, 134: 11-18.
doi: 10.1016/j.fcr.2012.04.010
[39] Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R. Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil, 2005, 269: 369-380.
doi: 10.1007/s11104-004-0909-9
[40] Brier N D, Gomand S V, Donner E, Paterson D, Delcour J A, Lombi E, Smolders E. Distribution of minerals in wheat grains (Triticum aestivum L.) and in roller milling fractions affected by pearling. J Agric Food Chem, 2015, 63: 1276-1285.
doi: 10.1021/jf5055485
[41] Fan M S, Zhao F J, Poulton P R, McGrath S P. Historical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 years. Sci Total Environ, 2008, 389: 532-538.
doi: 10.1016/j.scitotenv.2007.08.024
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!