欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1502-1515.doi: 10.3724/SP.J.1006.2022.13021

• 耕作栽培·生理生化 • 上一篇    下一篇

叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控

陈静1(), 任佰朝1,2, 赵斌1, 刘鹏1, 张吉旺1,2,*()   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    2山东省玉米技术创新中心, 山东莱州 261400
  • 收稿日期:2021-04-07 接受日期:2021-09-09 出版日期:2022-06-12 网络出版日期:2021-10-09
  • 通讯作者: 张吉旺
  • 作者简介:E-mail: 15650451831@163.com
  • 基金资助:
    山东省重点研发计划项目(2021LZGC014-2);国家现代农业产业技术体系建设专项(CARS-02-18);山东省中央引导地方科技发展资金项目(YDZX20203700002548)

Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates

CHEN Jing1(), REN Bai-Zhao1,2, ZHAO Bin1, LIU Peng1, ZHANG Ji-Wang1,2,*()   

  1. 1College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2Shandong Maize Technology Innovation Center, Laizhou 261400, Shandong, China
  • Received:2021-04-07 Accepted:2021-09-09 Published:2022-06-12 Published online:2021-10-09
  • Contact: ZHANG Ji-Wang
  • Supported by:
    Shandong Province Key Research and Development Program(2021LZGC014-2);National Modern Agricultural Technology and Industry System(CARS-02-18);Shandong Central Guiding the Local Science and Technology Development(YDZX20203700002548)

摘要:

为探究叶面喷施甜菜碱对夏玉米产量形成及抗氧化能力的调控作用, 于2019—2020年在山东农业大学试验农场进行试验, 选用京农科728 (Jingnongke 728, JNK)和登海618 (Denghai 618, DH)作为试验材料, 设6月5日(early sowing date, E)、6月15日(normal sowing date, N)和6月25日(late sowing date, L) 3个播期, 拔节期(V6)和大喇叭口期(V12)两次叶面喷施10 mmol L-1甜菜碱(leaf-spraying glycine betaine, GB)、等量清水(control check, CK)两种处理方式。结果表明, 与喷施清水相比, JNK和DH喷施甜菜碱后的产量增幅分别为3.05%~12.81%和2.08%~7.83%。较对照处理, 2019年, JNK品种3个播期(E、N和L)甜菜碱处理的总小花数, 分别增加5.09%、4.70%和2.27%, DH品种变化不显著; 2020年DH品种分别增加8.28%、3.95%和4.81%, JNK品种变化不显著; 2个品种2年穗粒数的增幅为0.22%~6.45%, 籽粒百粒重平均增加0.88 g、0.06 g和-0.46 g; 超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性, 3个播期平均分别增加1.23%、3.36%和3.20%, 丙二醛(MDA)含量减少11.73%。喷施甜菜碱缩小了不同播期处理间产量的差异, 有利于增加不同播期夏玉米的产量。

关键词: 夏玉米, 甜菜碱, 产量, 结实率, 籽粒灌浆

Abstract:

In order to explore the regulation of leaf-spraying glycine betaine on yield formation and antioxidation in summer maize, Jingnongke 728 (JNK) and Denghai 618 (DH) were selected as experimental materials at three different sowing dates of June 5 (early sowing date, E), June 15 (normal sowing date, N), and June 25 (late sowing date, L) from 2019 to 2020. Besides, two leaf-spraying time treatments were conducted by using 10 mmol L-1 glycine betaine (GB) and clear water (CK) at V6 and V12 stages. The results showed that compared with CK, the yield of summer maize JNK and DH after spraying glycine betaine increased by 3.05%-12.81% and 2.08%-7.83%, respectively. The average total number of florets of JNK obtained in the different treatment of E, N, and L increased by 5.09%, 4.70%, and 2.27%, respectively, which was not notably changed among DH in 2019. In contrast, the average total number of florets of DH at the sowing dates of E, N, and L increased by 8.28%, 3.95%, 4.81%, respectively, which was not notably changed among JNK in 2020 after spraying betaine. The kernels per ear increased by 0.22%-6.45%, and the 100-kernel weight of E, N, and L increased by 0.88, 0.06, and -0.46 g, respectively. In addition, the activities of SOD, POD, and CAT increased by 1.23%, 3.36%, and 3.20%, respectively, while the content of MDA decreased by 11.73%. In conclusion, spraying betaine could reduce the yield difference at different sowing dates and was beneficial to improve the productivity of summer maize at different sowing dates.

Key words: summer maize, glycine betaine, yield, seed setting rate, grain filling

图1

试验期间夏玉米生长季温度、降雨和太阳辐射(2019-2020)"

图2

甜菜碱对不同播期夏玉米产量及其构成因素的影响 E-CK: 6月5日播期对照; N-CK: 6月15日播期对照; L-CK: 6月25日播期对照; E-GB: 6月5日播期喷施甜菜碱; N-GB: 6月15日播期喷施甜菜碱; L-GB: 6月25日播期喷施甜菜碱; JNK: 京农科728; DH: 登海618。不同小写字母表示达到0.05显著水平。"

表1

喷施甜菜碱后不同播期夏玉米产量和产量构成因素的方差分析"

变异来源
Source of variation
自由度
Degrees of freedom
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
年份Year (Y) 1 ** ** ** **
播期 Sowing date (S) 2 ** ** ** **
品种 Hybrid (H) 1 ** ** ns **
甜菜碱 Glycine betaine (G) 1 ** ** * ns
S×G 2 ns ns ** **
S×H 2 ** ns ** **
H×G 1 ns ns ** ns
S×H×G 2 ns ns * ns

表2

喷施甜菜碱后不同播期夏玉米的产量和产量构成因素变化率"

年份
Year
处理
Treatment
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
单穗重
Weight per ear
单位面积穗粒数
Kernels per area
2019 E-JNK 12.81 a 1.83 cd 8.36 a 2.23 b 10.34 a 4.11 b
E-DH 2.08 d 2.29 cd -0.85 b 0.64 b 1.42 b 2.95 b
N-JNK 6.62 bc 4.43 bc 2.09 b 0.00 c 6.62 a 4.43 b
N-DH 2.83 d 6.07 a -4.43 c 1.44 b 1.37 b 7.60 ab
L-JNK 4.38 cd 0.27 d -5.85 c 10.58 a -5.60 c 10.87 a
L-DH 3.64 cd 0.22 d -5.33 c 9.23 a -5.12 c 9.48 a
2020 E-JNK 7.26 a 6.25 a 0.94 b 0.01 b 7.25 a 6.26 a
E-DH 7.16 a 6.67 a 0.63 b 0.07 b 7.34 a 6.49 a
N-JNK 4.75 ab 0.63 b 4.07 a 0.03 b 4.72 ab 0.66 b
N-DH 7.17 a 2.78 ab 4.19 a 0.08 b 7.08 a 2.86 b
L-JNK 3.05 b 3.45 ab -0.56 b 0.18 b 2.86 b 3.64 ab
L-DH 7.83 a 6.45 a 0.54 b 0.76 a 7.02 a 7.26 a

表3

产量和产量构成因素变化率的回归方程"

项目
Item
标准化回归方程
Standardized regression
决定系数
R2
所有处理 All treatments Y = 0.837X1+1.469X2+1.220X3 0.9990**
6月5日播期Sowing date June 5 (E) Y = 0.576X1+1.403X2+0.271X3 0.9999**
6月15日播期Sowing date June 15 (N) Y = 1.162X1+1.231X2+2.105X3 0.9999**
6月25日播期Sowing date June 25 (L) Y = 1.585X1+2.016X2+2.104X3 0.9999**
京农科728 Jingnongke 728 Y = 0.698X1+1.453X2+1.208X3 0.9995**
登海618 Denghai 618 Y = 1.045X1+1.422X2+1.340X3 0.9992**

图3

甜菜碱对不同播期夏玉米生育进程的影响 E-CK: 6月5日播期对照; N-CK: 6月15日播期对照; L-CK: 6月25日播期对照; E-GB: 6月5日播期喷施甜菜碱; N-GB: 6月15日播期喷施甜菜碱; L-GB: 6月25日播期喷施甜菜碱; JNK: 京农科728; DH: 登海618; SD: 播种; VT: 抽雄期; R1: 吐丝期; R6: 成熟期。"

图4

甜菜碱对不同播期夏玉米总小花数和总结实率的影响 E-CK: 6月5日播期对照; N-CK: 6月15日播期对照; L-CK: 6月25日播期对照; E-GB: 6月5日播期喷施甜菜碱; N-GB: 6月15日播期喷施甜菜碱; L-GB: 6月25日播期喷施甜菜碱; JNK: 京农科728; DH: 登海618。不同小写字母表示达到0.05显著水平。"

图5

总结实率变化率和总小花数变化率的回归分析 JNK-N: 京农科728总小花数; JNK-T: 京农科728总结实率; DH-N: 登海618总小花数; DH-T: 登海618总结实率; JNK: 京农科728; DH: 登海618。"

图6

甜菜碱对不同播期籽粒干重及干重变化量的影响 E-JNK: 6月5日播期京农科728; N-JNK: 6月15日播期京农科728; L-JNK: 6月25日播期京农科728; E-DH: 6月5日播期登海618; N-DH: 6月15日播期登海618; L-DH: 6月25日播期登海618; CK: 对照。"

图7

不同播期籽粒灌浆速率及总灌浆速率变化量 处理和缩写同图6。"

图8

籽粒干重变化量和总灌浆速率变化量的回归分析 JNK: 京农科728; DH: 登海618。"

表4

甜菜碱对不同播期果穗穗部性状的影响"

年份
Year
处理
Treatment
畸形率
Abnormal ear rate (%)
穗长
Ear length (cm)
秃顶长
Barren ear length (cm)
穗粗
Ear diameter (cm)
秃尖比
Barren ear length/ ear length (%)
有效穗长
Effective ear length (cm)
2019 京农科728 Jingnongke 728
E-CK 27.16 a 17.57 a 1.54 b 4.62 bc 8.76 b 16.03 a
E-GB 13.03 b 17.59 a 1.47 b 4.56 c 8.36 b 16.12 a
N-CK 27.11 a 17.47 a 2.22 a 4.73 b 12.71 a 15.25 b
N-GB 12.49 b 17.5 a 2.19 a 4.82 b 12.51 a 15.31 b
L-CK 13.70 b 14.46 b 0.94 c 5.11 a 6.50 c 13.52 c
L-GB 28.08 a 14.46 b 0.75 c 5.01 a 5.19 c 13.71 c
登海618 Denghai 618
E-CK 15.56 b 17.17 a 0.34 c 4.6 b 1.98 d 16.83 a
E-GB 10.31 cd 17.05 a 0.21 c 4.49 c 1.23 d 16.84 a
N-CK 12.31 c 17.56 a 1.21 a 4.85 ab 6.89 a 16.35 a
N-GB 9.24 d 17.53 a 1.29 a 4.87 ab 7.36 a 16.24 a
L-CK 8.92 d 17.87 a 0.91 ab 4.95 a 5.09 b 16.96 a
L-GB 22.54 a 17.80 a 0.62 b 4.87 ab 3.48 c 17.18 a
2020 京农科728 Jingnongke 728
E-CK 7.22 c 16.67 a 1.49 a 4.57 c 8.94 a 15.18 a
E-GB 3.13 d 16.69 a 1.38 a 4.72 b 8.20 a 15.31 a
N-CK 9.38 c 16.77 a 1.53 a 4.79 b 9.12 a 15.24 a
N-GB 9.28 c 16.75 a 1.45 a 4.82 ab 8.76 a 15.30 a
L-CK 23.76 b 16.50 a 1.60 a 4.90 a 9.70 a 14.90 a
L-GB 26.04 a 16.86 a 1.50 a 4.85 a 8.90 a 15.36 a
年份
Year
处理
Treatment
畸形率
Abnormal ear rate (%)
穗长
Ear length (cm)
秃顶长
Barren ear length (cm)
穗粗
Ear diameter (cm)
秃尖比
Barren ear length/ ear length (%)
有效穗长
Effective ear length (cm)
登海618 Denghai 618
E-CK 6.19 b 18.48 a 0.67 b 4.67 b 3.63 d 17.81 ab
E-GB 2.97 c 18.63 a 0.63 b 4.65 b 4.99 c 18.00 a
N-CK 4.00 b 18.79 a 0.87 b 4.85 ab 4.63 c 17.92 a
N-GB 4.21 b 18.79 a 0.60 b 4.77 b 3.19 d 18.19 a
L-CK 13.59 a 18.44 a 1.64 a 4.90 a 8.89 a 16.80 b
L-GB 14.14 a 18.84 a 1.14 a 4.91 a 6.05 b 17.70 ab

图9

甜菜碱对夏玉米叶片抗氧化特性的影响 CK: 对照; GB: 喷施甜菜碱; VT、VT+15、VT+30和VT+45分别代表抽雄期、抽雄后15 d、30 d、45 d; R6: 成熟期。"

表5

不同播期夏玉米全生育期的气候条件"

年份
Year
处理
Treatment
日均温
DAT
(℃)
日均温I
DAT I
(℃)
日均温II
DAT II
(℃)
日均辐射
DAR
(MJ m-2)
日均辐射I
DAR I
(MJ m-2)
日均辐射II
DAR II
(MJ m-2)
总降雨
TP
(mm)
降雨天数I TPD I
(d)
降雨天数II TPD II
(d)
2019 E-JNK 25.96 27.30 24.53 16.16 18.62 13.80 206.50 12 31
E-DH 25.96 27.22 24.70 16.16 18.64 13.94 206.50 12 31
N-JNK 25.49 27.61 23.42 15.54 17.60 13.75 190.50 16 24
N-DH 25.45 27.65 23.43 15.53 17.77 13.68 190.50 15 25
L-JNK 24.54 27.24 22.09 14.78 15.90 13.80 182.00 24 17
L-DH 24.45 27.39 22.02 14.76 16.38 13.48 182.00 22 19
2020 E-JNK 25.42 25.05 25.81 14.57 15.40 13.69 221.20 37 42
E-DH 25.44 25.11 25.77 14.62 15.76 13.48 221.20 35 44
N-JNK 24.84 24.94 25.59 14.08 14.64 13.45 219.00 44 35
N-DH 24.89 24.87 24.91 14.15 14.57 13.74 219.00 43 36
L-JNK 24.01 25.54 22.72 13.56 14.11 13.10 200.50 46 28
L-DH 24.01 25.47 22.83 13.56 14.07 13.15 200.50 45 29

表6

产量及其构成因素与气象因子的相关性"

处理
Treatment
因子
Factor
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
CK 日均温 DAT 0.075 -0.350** 0.195 0.349**
日均温I DAT I -0.404** 0.568** -0.640** -0.432**
日均温II DAT II 0.429** -0.734** 0.699** 0.658**
日均辐射 DAR -0.180 0.027 -0.190 -0.016
日均辐射I DAR I -0.182 0.101 -0.240 -0.029
日均辐射II DAR II -0.131 0.006 -0.078 -0.145
总降雨 TP 0.468** -0.805** 0.771** 0.687**
降雨天数I TPD I 0.291* -0.273* 0.389** 0.233
降雨天数II TPD II 0.462** -0.850** 0.802** 0.705**
GB 日均温 DAT 0.133 -0.206 0.207 0.371*
日均温I DAT I -0.463** 0.441** -0.637** -0.167
日均温II DAT II 0.509** -0.492** 0.693** 0.473**
日均辐射 DAR -0.163 0.063 -0.194 0.159
日均辐射I DAR I -0.177 0.116 -0.238 0.169
日均辐射II DAR II -0.114 0.041 -0.115 -0.097
总降雨 TP 0.556** -0.549** 0.763** 0.452**
降雨天数I TPD I 0.303* -0.212 0.388** -0.012
降雨天数II TPD II 0.553** -0.666** 0.830** 0.486**

表7

产量及其构成因素变化率与气象因子的相关性"

因子Factor Y X1 X2 X3
日均温 DAT 0.267 0.127 0.359 -0.301
日均温I DAT I -0.170 -0.289 -0.372 0.497*
日均温II DAT II 0.327 0.283 0.620* -0.663*
日均辐射 DAR 0.108 -0.140 0.071 0.092
日均辐射I DAR I 0.063 -0.119 0.013 0.109
日均辐射II DAR II 0.090 -0.247 0.073 0.154
总降雨 TP 0.354 0.312 0.662** -0.711**
降雨天数I TPD I 0.014 0.198 0.163 -0.312
降雨天数II TPD II 0.362 0.496 0.570* -0.721**
[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 中华人民共和国国家统计局. 中国统计年鉴(2020). 北京: 中国统计出版社, 2020. pp 383-389.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook (2020). Beijing: China Statistics Press, 2020. pp 383-389(in Chinese).
[3] 张镇涛, 杨晓光, 高继卿, 王晓煜, 白帆, 孙爽, 刘志娟, 明博, 谢瑞芝, 王克如, 李少昆. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018, 51: 3258-3274.
Zhang Z T, Yang X G, Gao J Q, Wang X Y, Bai F, Sun S, Liu Z J, Ming B, Xie R Z, Wang K R, Li S K. Analysis of suitable sowing date for summer maize in north China plain under climate change. Sci Agric Sin, 2018, 51: 3258-3274 (in Chinese with English abstract).
[4] Chen X X, Wang L C, Niu Z G, Zhang M, Li C A, Li J R。 The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric For Meteorol, 2020, 282/283: 107867.
doi: 10.1016/j.agrformet.2019.107867
[5] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling. Nature, 2009, 459: 1071-1078.
doi: 10.1038/nature08122
[6] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应. 作物学报, 2020, 46: 1617-1627.
Ma Z B, Dong X R, Tang H H, Yan P, Lu L, Wang Q Y, Fang M Y, Wang Q, Dong Z Q. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics. Acta Agron Sin, 2020, 46: 1617-1627 (in Chinese with English abstract).
[7] 卢霖, 董志强, 董学瑞, 李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响. 作物学报, 2016, 42: 561-573.
doi: 10.3724/SP.J.1006.2016.00561
Lu L, Dong Z Q, Dong X R, Li G Y. Effects of Ethylene- chlormequat-potassium on characteristics of leaf senescence at different plant positions after anthesis under different planting densities. Acta Agron Sin, 2016, 42: 561-573 (in Chinese with English abstract).
[8] 张天鹏, 杨兴洪. 甜菜碱提高植物抗逆性及促进生长发育研究进展. 植物生理学报, 2017, 53: 1955-1962.
Zhang T P, Yang X H. Research on the mechanism of glycine betaine regulating plants stress resistance and development. Plant Physiol J, 2017, 53: 1955-1962 (in Chinese with English abstract).
[9] 刘禹辰, 杨德光, 李梁, 柴孟竹, 鞠然, 白冰, 刘宇龙. 低温胁迫对玉米种子萌发及淀粉分解酶类活性的影响. 玉米科学, 2018, 26(1):64-68.
Liu Y C, Yang D G, Li L, Chai M Z, Ju R, Bai B, Liu Y L. Effect of low temperature stress on maize seed germination and starch decomposition enzyme activity. J Maize Sci, 2018, 26(1):64-68 (in Chinese with English abstract).
[10] Storey R, Wyn Jone R G. Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci Lett, 1975, 4: 161.
doi: 10.1016/0304-4211(75)90090-5
[11] Shemi R, Wang R, Gheith E M S, Hussain H A, Hussain S, Irfan M, Cholidah L, Zhang K P, Zhang S, Wang L C. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci Rep, 2021, 11: 3195.
doi: 10.1038/s41598-021-82264-7
[12] 刘陈晨, 李旭, 任士伟, 陈海宁. 低温胁迫下外源甜菜碱对水稻秧苗期生长的影响. 江苏农业科学, 2019, 47(11):100-102.
Liu C C, Li X, Ren S W, Chen H N. Effects of exogenous glycine betaine on growth of rice seedlings under low temperature stress. J Jiangsu Agric Sci, 2019, 47(11):100-102 (in Chinese with English abstract).
[13] 杨晓云, 宋涛, 刘辉, 王红. 外源甜菜碱对NaCl胁迫下玉米幼苗生长和叶绿素含量的影响. 湖北农业科学, 2017, 56: 830-833.
Yang X Y, Song T, Liu H, Wang H. Effects of exogenous glycine betaine on the growth and chlorophyll content of maize seedlings under NaCl stress. J Hubei Agric Sci, 2017, 56: 830-833 (in Chinese with English abstract).
[14] 梁超. 过量积累甜菜碱改善小麦耐盐性的生理机制研究. 山东农业大学硕士学位论文, 山东泰安, 2007.
Liang C. Studies on Physiological Mechanisms of Over- accumulating Glycine Betaine in Improving the Salt Tolerance in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2007 (in Chinese with English abstract).
[15] Chen T H H, Murata N. Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 2011, 34: 1-20.
doi: 10.1111/pce.2011.34.issue-1
[16] Hamani A K M, Wang G S, Soothar M K, Shen X J, Gao Y, Qiu R J, Mehmood F. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol, 2020, 20: 434.
doi: 10.1186/s12870-020-02624-9
[17] 李玉静, 宋宪亮, 杨兴洪, 刘娟, 李学刚, 朱玉庆, 孙学振, 王振林. 甜菜碱浸种对棉苗耐盐性的影响. 作物学报, 2008, 34: 305-310.
doi: 10.3724/SP.J.1006.2008.00305
Li Y J, Song X L, Yang X H, Liu J, Li X G, Zhu Y Q, Sun X Z, Wang Z L. Effects of seed soaking with glycine betaine on the salt tolerance of cotton seedlings. Acta Agron Sin, 2008, 34: 305-310 (in Chinese with English abstract).
[18] 许高平, 刘秀峰, 袁文娅, 王璞, 楼辰军, 杨兆顺. 水杨酸和甜菜碱浸种对低温干旱胁迫下玉米苗期生长的影响. 玉米科学, 2018, 26(6):50-56.
Xu G P, Liu X F, Yuan W Y, Wang P, Lou C J, Yang Z S. Effects of presoaking with salicylic acid and betaine on germination and seedling growth of maize under chilling and drought stresses. J Maize Sci, 2018, 26(6):50-56 (in Chinese with English abstract).
[19] Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen T H H, Murata N. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J, 2003, 36: 165-176.
pmid: 14535882
[20] Park E J, Jeknić Z, Chen T H H, Murata N. The codA transgene for glycine betaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J, 2007, 5: 422-430.
doi: 10.1111/pbi.2007.5.issue-3
[21] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206-216.
doi: 10.1016/j.envexpbot.2005.12.006
[22] 张泰, 谭廷鸿, 董庆坤, 张凯, 邱念伟. 乳熟期小麦喷施甜菜碱增产效果研究. 安徽农业科学, 2011, 39: 21621-21622.
Zhang T, Tan Y H, Dong Q K, Zhang K, Qiu N W. Study on the yield-increasing effect of foliar-application betaine to wheat during milk stage. J Anhui Agric Sci, 2011, 39: 21621-21622 (in Chinese with English abstract).
[23] 许晅, 李小艳, 张占芳, 周燮, 夏凯, 甘立军. 乙烯利-甜菜碱复配剂对玉米生长发育的影响. 玉米科学, 2014, 22(5):71-75.
Xu X, Li X Y, Zhang Z F, Zhou X, Xia K, Gan L J. Effects of mixture compound of ethephon and glycine betaine on the growth and development of maize. J Maize Sci, 2014, 22(5):71-75 (in Chinese with English abstract).
[24] 尹海龙, 田长彦. 根施甜菜碱对盐胁迫下玉米幼苗根系生长与光合特性的影响. 干旱区资源与环境, 2013, 27(9):113-118.
Yin H L, Tian C Y. Effects of root-applied betaine on the root growth and photosynthetic characteristics under salt stress in maize seedlings. J Arid Land Res Environ, 2013, 27(9):113-118 (in Chinese with English abstract).
[25] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[26] Durner J, Klessing D F. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem, 1996, 271: 28492-28502.
doi: 10.1074/jbc.271.45.28492 pmid: 8910477
[27] Hammerschmidt R, Nuckles E M, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrchum lagenarium. Physiol Plant Pathol, 1982, 20: 73-82.
doi: 10.1016/0048-4059(82)90025-X
[28] 孟佳佳, 董树亭, 石德杨, 张海燕. 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013, 39: 912-918.
Meng J J, Dong S T, Shi D Y, Zhang H Y. Relationship of ear differentiation with kernel development and barrenness in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 912-918 (in Chinese with English abstract).
[29] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46: 614-630.
doi: 10.3724/SP.J.1006.2020.93034
Jin R, Li Z, Yang Y, Zhou F, Du L J, Li X L, Kong F L, Yuan J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agron Sin, 2020, 46: 614-630 (in Chinese with English abstract).
[30] Chen T H H, Murata N. Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci, 2008, 13: 499-505.
doi: 10.1016/j.tplants.2008.06.007
[31] 鱼海跃, 韩紫璇, 张钰石, 段留生, 张明才, 李召虎. 冠菌素对玉米籽粒灌浆特性与淀粉合成的调控效应. 作物学报, 2019, 45: 1535-1543.
Yu H Y, Han Z X, Zhang Y S, Duan L S, Zhang M C, Li Z H. Regulation of coronatine on the grain filling characteristics and starch synthesis in maize kernels. Acta Agron Sin, 2019, 45: 1535-1543 (in Chinese with English abstract).
[32] 李民华, 易永, 黄晚华, 黄安凤, 刘思华. 玉米灌浆中后期倒伏风灾指标及对产量的影响. 湖南农业大学学报(自然科学版), 2021, 47: 9-16.
Li M H, Yi Y, Huang W H, Huang A F, Liu S H. The lodging index of wind disaster in the middle and late grouting stages of maize and the effects on grain yield. J Hunan Agric Univ (Nat Sci Edn), 2021, 47: 9-16 (in Chinese with English abstract).
[33] 王永军, 杨今胜, 袁翠平, 柳京国, 李登海, 董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性. 作物学报, 2013, 39: 2183-2191.
doi: 10.3724/SP.J.1006.2013.02183
Wang Y J, Yang J S, Yuan C P, Liu J G, Li D H, Dong S T. Characteristics of senescence and antioxidant enzyme activities in leaves at different plant parts of summer maize with the super-high yielding potential after anthesis. Acta Agron Sin, 2013, 39: 2183-2191 (in Chinese with English abstract).
[34] 丁梦秋. 花后高温干旱胁迫影响糯玉米叶片衰老的生理机制研究. 扬州大学硕士学位论文, 江苏扬州, 2019.
Ding M Q. Physiological Mechanism of Post-silking High Temperature and Drought Stress Affecting Leaf Senescence of Waxy Maize. MS Thesis of Yangzhou Agricultural University, Yangzhou, Jiangsu, China, 2019 (in Chinese with English abstract).
[35] 赵小强, 彭云玲, 方鹏, 武博洋, 闫慧萍. 不同外源调节物质对低温胁迫下玉米的缓解效应分析. 干旱地区农业研究, 2018, 36(3):184-193.
Zhao X Q, Peng Y L, Fang P, Wu B Y, Yan H P. Mitigation effect analysis of different exogenous regulatory substances on maize under low-temperature stress. Agric Res Arid Areas, 2018, 36(3):184-193 (in Chinese with English abstract).
[36] 侯鹏飞, 马俊青, 赵鹏飞, 张欢玲, 赵会杰, 刘华山, 赵一丹, 汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节. 作物学报, 2013, 39: 1319-1324.
Hou P F, Ma J Q, Zhao P F, Zhang H L, Zhao H J, Liu H S, Zhao Y D, Wang Y X. Effects of betaine on chloroplast protective enzymes and psbA gene expression in wheat seedlings under drought stress. Acta Agron Sin, 2013, 39: 1319-1324 (in Chinese with English abstract).
[37] Zhou Z Q, Shi H Y, Fu Q, Li T X, Thian Y G, Liu S N. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China. J Hydrol, 2020, 588: 125097.
doi: 10.1016/j.jhydrol.2020.125097
[38] 许晅. 乙烯利、甜菜碱和表油菜素内酯对玉米生长的影响. 南京农业大学硕士学位论文, 江苏南京, 2012.
Xu X. Effects of Ethephom, Glycine Betaing and Epibrassinolide on the Growth of Maize. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012 (in Chinese with English abstract).
[39] 祁利潘, 陶洪斌, 周祥利, 吴景玉, 赵丽晓, 王璞. 化学药剂处理对灌浆期低温条件下玉米光合特性及产量的影响. 玉米科学, 2013, 21(3):52-56.
Qi L P, Tao H B, Zhou X L, Wu J Y, Zhao L X, Wang P. Effects of chemical regulation on maize photosynthesis and yield under low temperature stress during grain filling stage. J Maize Sci, 2013, 21(3):52-56 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[6] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[7] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[8] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[13] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!