作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2041-2052.doi: 10.3724/SP.J.1006.2022.14142
李鑫1(), 王剑2, 李亚兵2,*(), 韩迎春2, 王占彪2, 冯璐2, 王国平1,2, 熊世武2, 李存东1,*(), 李小飞2,*()
LI Xin1(), WANG Jian2, LI Ya-Bing2,*(), HAN Ying-Chun2, WANG Zhan-Biao2, FENG Lu2, WANG Guo-Ping1,2, XIONG Shi-Wu2, LI Cun-Dong1,*(), LI Xiao-Fei2,*()
摘要:
发展棉花间套作体系是缓解我国黄河流域棉花与其他作物争地矛盾的主要策略, 但目前对棉花间套作体系下棉花的增产机理尚不明确。因此, 本研究通过田间试验设置了棉花与小麦、大蒜和花生间套作, 并对其根系分别采取塑料膜分隔、尼龙网分隔和不分隔处理, 从而研究在隔根处理下不同作物与棉花间作对棉花产量及生物量累积的影响。研究表明: (1) 隔根处理下的不同作物与棉花间作的土地当量比(LER)大于1, 说明试验中棉花间套作体系均体现出间作优势, 且在小麦/棉花套作和大蒜/棉花套作的体系中, 小麦和大蒜对于棉花的资源竞争力大于0, 小麦和大蒜在共生期内是优势种; 花生相对于棉花的资源竞争力小于0, 在花生/棉花间作体系中, 棉花是优势种。(2) 在棉花盛蕾期, 单作棉处理的棉花的叶、茎器官的干物质累积量多于其他3个处理, 而在花铃期后, 间套作体系中的干物质积累量多于单作棉处理, 间套作体系中的棉花生殖器官干物质积累量高于单作棉处理。(3) 盛蕾期和初花期, 单作棉的茎、叶器官的分配率高于小麦套作棉花、大蒜套作棉花和花生间作棉花处理, 在盛花期和盛絮期, 处理间的差异不显著; 不同种植模式下生殖器官干物质分配率的差异与茎、叶器官相反。相关研究结果可为间套作模式下的棉花间作优势的产生机理探究提供理论支持, 为间套作体系生产力的提高提供科学依据。
[1] | 李小飞, 韩迎春, 王国平, 王占彪, 冯璐, 杨北方, 范正义, 雷亚平, 熊世武, 邢芳芳, 李亚兵. 棉田间套复合体系提升生态系统服务功能研究进展. 棉花学报, 2020, 32: 472-482. |
Li X F, Han Y C, Wang G P, Wang Z B, Feng L, Yang B F, Fan Z Y, Lei Y P, Xiong S W, Xing F F, Li Y B. Recent advances in the enhancement of agroecosystem services and functioning by cotton-based intercropping systems. Cotton Sci, 2020, 32: 472-482. (in Chinese with English abstract) | |
[2] | 中国农业科学院棉花研究. 中国棉花栽培学. 上海: 上海科学技术出版社, 2019. pp 346-350. |
Institute of Cotton Research of CAAS. Cotton Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2019. pp 346-350. (in Chinese) | |
[3] |
Brooker R W, Karley A J, Newton A C, Pakeman R J, Schöb C. Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Funct Ecol, 2016, 30: 98-107.
doi: 10.1111/1365-2435.12496 |
[4] |
Li L, Tilman D, Lambers H, Zhang F S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol, 2014, 203: 63-69.
doi: 10.1111/nph.12778 |
[5] |
Ren W, Hu L, Zhang J, Sun C, Tang J, Yuan Y, Chen X. Can positive interactions between cultivated species help to sustain modern agriculture? Front Ecol Environ, 2014, 12: 507-514.
doi: 10.1890/130162 |
[6] | 罗华, 王杰, 宋勇, 欧小球, 赵志坚, 唐玲玲, 罗琳. 玉米-大豆间套作模式研究现状及其展望. 作物研究, 2020, 34: 502-506. |
Luo H, Wang J, Song Y, Ou X Q, Zhao Z J, Tang L L, Luo L. Research status and prospect of maize and soybean intercropping model. Crop Res, 2020, 34: 502-506. (in Chinese with English abstract) | |
[7] | 党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆. 棉花间作模式中作物养分竞争吸收和积累动态的研究. 植物营养与肥料学报, 2013, 19: 166-173. |
Dang X Y, Liu J G, Paniguli, Wang J L, Wei C Z, Li L. Accumulation and competition of nitrogen, phosphorus and potassium in cotton-based intercropping systems in Xinjiang, China. J Plant Nutr Fert, 2013, 19: 166-173. (in Chinese with English abstract) | |
[8] |
Zhang L, Vander W W, Zhang S, Li B, Spiertz J H J. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Res, 2007, 103: 178-188.
doi: 10.1016/j.fcr.2007.06.002 |
[9] | 张恩和, 黄高宝. 间套种植复合群体根系时空分布特征. 应用生态学报, 2003, 8: 1301-1304. |
Zhang E H, Huang G B. Temporal and spatial distribution characteristics of the crop root in intercropping system. Chin J Appl Ecol, 2003, 8: 1301-1304. (in Chinese with English abstract) | |
[10] |
刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. 植物生态学报, 2008, 32: 477-484.
doi: 10.3773/j.issn.1005-264x.2008.02.027 |
Liu G C, Yang Q F, Li L, Sun J H. Intercropping advantage and contribution of above- and below-ground interactions in wheat-maize intercropping. J Plant Ecol, 2008, 32: 477-484. (in Chinese with English abstract) | |
[11] | 李隆, 杨思存, 孙建好, 李晓林, 张福锁. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999, 10: 197-200. |
Li L, Yang S C, Sun J H, Li X L, Zhang F S. Interspecific competition and facilitation in wheat/soybean intercropping system. Chin J Appl Ecol, 1999, 10: 197-200. (in Chinese with English abstract) | |
[12] |
Li L, Sun J H, Zhang F S, Li X L, Hengel Z R, Yang S C. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3 |
[13] | 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38: 965-973. |
Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and faba bean. Sci Agric Sin, 2005, 38: 965-973 (in Chinese with English abstract). | |
[14] | 沈荔花, 李娜, 阮妙鸿, 林文雄. 间作隔根对玉米/大豆光合、产量及土壤理化性质的影响. 福建农业学报, 2020, 35: 1280-1288. |
Shen L H, Li N, Ruan M H, Lin W X. Effects of interactions between roots of intercropped maize and soybean on plant photosynthesis, crop yield, and soil physiochemical properties. Fujian J Agric Sci, 2020, 35: 1280-1288. (in Chinese with English abstract) | |
[15] | Willey R. Intercropping: its importance and research needs: Part I. Competition and yield advantages. Field Crops Abstr, 1979, 32: 1-10. |
[16] | 薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006, 26: 3631-3640. |
Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effects of nitrogen levels on the dynamic changes of cotton plant biomass, nitrogen accumulation characteristics and nitrogen use efficiency after initial flowering. Acta Ecol Sin, 2006, 26: 3631-3640. (in Chinese with English abstract) | |
[17] |
Hauggaard N H, Ambus P, Jensen E S. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique. Plant Soil, 2001, 236: 63-74.
doi: 10.1023/A:1011909414400 |
[18] |
Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248: 305-312.
doi: 10.1023/A:1022352229863 |
[19] |
Zhu J, Werf W V D, Anten N P R, Vos J, Evers J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol, 2015, 207: 1213-1222.
doi: 10.1111/nph.13416 |
[20] |
Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Werf W V D. Intercropping enhances soil carbon and nitrogen. Global Change Biol, 2015, 21: 1715-1726.
doi: 10.1111/gcb.12738 |
[21] | 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066. |
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Res, 2015, 30: 1057-1066. (in Chinese with English abstract) | |
[22] |
Li Q S, Wu L K, Chen J, Khan M A, Luo X M, Lin W X. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. J Integr Agric, 2016, 15: 101-110.
doi: 10.1016/S2095-3119(15)61089-9 |
[23] | 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1): 129-136. |
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Effect of above- and below-ground interactions on maize/soybean intercropping advantage. Trans CSAM, 2014, 45(1): 129-136. (in Chinese with English abstract) | |
[24] |
Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA, 2016, 113: 6496-6501.
doi: 10.1073/pnas.1523580113 |
[25] |
Liang J P, He Z J. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agric Water Manage, 2020, 240: 106277.
doi: 10.1016/j.agwat.2020.106277 |
[26] | 李伶俐, 阮元, 刘伟, 马宗斌, 朱伟. 间套紫花苜蓿对棉花生长发育、产量及棉田土壤微生物和酶活性的影响. 河南农业科学, 2019, 48(6): 52-59. |
Li L L, Ruan Y, Liu W, Ma Z B, Zhu W. Effects of intercropping alfalfa on growth and yield of cotton, microorganism and enzyme activities of cotton field soil. J Henan Agric Sci, 2019, 48(6): 52-59. (in Chinese with English abstract) | |
[27] |
Li L, Sun J J, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3 |
[28] |
Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res, 2001, 71: 173-183.
doi: 10.1016/S0378-4290(01)00157-5 |
[29] | 魏红国. 杏棉间作对棉花冠层结构、光合生产及养分运移特征的影响研究. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2011. |
Wei H G. Study on Canopy Structure, Photosynthesis Production and Nutrients Transfer Characteristics of Cotton in Apricot-cotton Intercropping System. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2011. (in Chinese with English abstract) | |
[30] |
Huang C D, Liu Q Q, Gou F, Li X L, Zhang C C, van der Werf W, Zhang F S. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Res, 2017, 201: 41-51.
doi: 10.1016/j.fcr.2016.10.021 |
[31] | 齐万海, 柴强. 不同隔根方式下间作小麦玉米的竞争力及产量响应. 中国生态农业学报, 2010, 18: 31-34. |
Qi W H, Chai Q. Yield response to wheat/maize competitiveness in wheat/maize intercropping system under different root partition patterns. Chin J Eco-Agric, 2010, 18: 31-34. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00031 |
|
[32] |
Li L, Sun J H, Zhang F S, Guo T W, Bao X G, Smith F A, Smith S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290.
doi: 10.1007/s00442-005-0256-4 |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 黄中文,赵团结,盖钧镒. 大豆不同产量水平生物量积累与分配的动态分析[J]. 作物学报, 2009, 35(8): 1483-1490. |
[3] | 马韫韬;郭焱;展志岗;李保国;Philippe de Reffye. 玉米生长虚拟模型GREENLAB-Maize的评估[J]. 作物学报, 2006, 32(07): 956-963. |
[4] | 赵秉强;张福锁;李增嘉;李凤超;张新春;申加祥;潘海军;赵甲美;尹玉波;武传杰. 间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ. 间作早春玉米根系数量与活性的空间分布及变化规律[J]. 作物学报, 2001, 27(06): 974-979. |
[5] | 赵秉强;李凤超;李增嘉;张保仁. 粮菜间套作带型运用规律的研究[J]. 作物学报, 1999, 25(03): 356-362. |
[6] | 黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用[J]. 作物学报, 1999, 25(01): 16-24. |
[7] | 王秋杰;寇长林;王永歧;王兴仁;张福锁. 砂地小麦套作花生的产量优势及其与养分利用效率关系的研究[J]. 作物学报, 1999, 25(01): 70-75. |
|