欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2041-2052.doi: 10.3724/SP.J.1006.2022.14142

• 耕作栽培·生理生化 • 上一篇    下一篇

不同间套作模式对棉花产量和生物量累积、分配的影响

李鑫1(), 王剑2, 李亚兵2,*(), 韩迎春2, 王占彪2, 冯璐2, 王国平1,2, 熊世武2, 李存东1,*(), 李小飞2,*()   

  1. 1棉花生物学国家重点实验室河北基地 / 河北农业大学农学院, 河北保定 071001
    2棉花生物学国家重点实验室 / 中国农业科学院棉花研究所, 河南安阳 455000
  • 收稿日期:2021-08-09 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-21
  • 通讯作者: 李亚兵,李存东,李小飞
  • 作者简介:E-mail: lixinhbau2015@163.com
  • 基金资助:
    国家自然科学基金项目(31901127)

Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation

LI Xin1(), WANG Jian2, LI Ya-Bing2,*(), HAN Ying-Chun2, WANG Zhan-Biao2, FENG Lu2, WANG Guo-Ping1,2, XIONG Shi-Wu2, LI Cun-Dong1,*(), LI Xiao-Fei2,*()   

  1. 1College of Agricultural, Hebei Agricultural University / Hebei Base of State Key Laboratory of Cotton Biology, Baoding 071001, Hebei, China
    2Institute of Cotton Research, Chinese Academy of Agricultural Science / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2021-08-09 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-21
  • Contact: LI Ya-Bing,LI Cun-Dong,LI Xiao-Fei
  • Supported by:
    National Natural Science Foundation of China(31901127)

摘要:

发展棉花间套作体系是缓解我国黄河流域棉花与其他作物争地矛盾的主要策略, 但目前对棉花间套作体系下棉花的增产机理尚不明确。因此, 本研究通过田间试验设置了棉花与小麦、大蒜和花生间套作, 并对其根系分别采取塑料膜分隔、尼龙网分隔和不分隔处理, 从而研究在隔根处理下不同作物与棉花间作对棉花产量及生物量累积的影响。研究表明: (1) 隔根处理下的不同作物与棉花间作的土地当量比(LER)大于1, 说明试验中棉花间套作体系均体现出间作优势, 且在小麦/棉花套作和大蒜/棉花套作的体系中, 小麦和大蒜对于棉花的资源竞争力大于0, 小麦和大蒜在共生期内是优势种; 花生相对于棉花的资源竞争力小于0, 在花生/棉花间作体系中, 棉花是优势种。(2) 在棉花盛蕾期, 单作棉处理的棉花的叶、茎器官的干物质累积量多于其他3个处理, 而在花铃期后, 间套作体系中的干物质积累量多于单作棉处理, 间套作体系中的棉花生殖器官干物质积累量高于单作棉处理。(3) 盛蕾期和初花期, 单作棉的茎、叶器官的分配率高于小麦套作棉花、大蒜套作棉花和花生间作棉花处理, 在盛花期和盛絮期, 处理间的差异不显著; 不同种植模式下生殖器官干物质分配率的差异与茎、叶器官相反。相关研究结果可为间套作模式下的棉花间作优势的产生机理探究提供理论支持, 为间套作体系生产力的提高提供科学依据。

关键词: 间套作, 地下部分隔, 产量优势, 生物量分配

Abstract:

The development of cotton intercropping system is the main strategy to alleviate the conflict between cotton and other crops for land in the Yellow River Basin of China, but the mechanism of cotton yield increases in cotton intercropping system is still unclear. In this study, a two-year field experiment with cotton-based intercropping systems (wheat/cotton, garlic/cotton, and peanut/cotton) and three root partitions (no, mesh, and plastic partitions) to study the effects of different crops intercropped with cotton on yield, biomass accumulation and allocation. The study showed that: (1) The land equivalent ratios (LERs) of different crops intercropped with cotton were greater than 1, indicating that the cotton intercropping system in the experiment had intercropping advantage. The resource competitiveness of wheat and garlic relative to cotton was greater than 0, indicating that wheat and garlic were dominant species in the co-growth period of wheat/cotton intercropping and garlic/cotton intercropping systems, whereas the resource competitiveness of peanuts relative to cotton was less than 0, indicating that cotton was dominant species in peanut/cotton intercropping system. (2) Dry matter accumulation of the leaf and stem in sole cotton cropping system was more than that of intercropping systems at bud stage, while the dry matter accumulation in intercropping systems was more than that in sole cotton cropping after the flowering and boll stages. The reproductive organs dry matter accumulation in intercropping systems was also higher than that in sole cotton cropping system. (3) The distribution rate of the stem and leaf in sole cotton was significantly higher than that in cotton intercropped with wheat, garlic, and peanut at bud stage and initial flowering stage, but the difference was not significant at full-bloom and open boll stages. However, the opposite pattern was observed in dry matter distribution rate of reproductive organs. These results can provide theoretical support for the mechanisms of cotton intercropping advantage and scientific basis for the productivity improvement of intercropping systems.

Key words: intercropping, root partition, yield advantage, biomass allocation

图1

2019年和2020年的每日温度和降雨量 日最高温度值和最低温度值的变化分别用连续的红线和蓝线表示。竖条表示每天的降雨总量。"

图2

不同种植模式示意图 (a) 小麦/棉花套作; (b) 大蒜/棉花套作; (c) 花生/棉花间作; (d) 棉花单作。"

表1

棉花生育进程"

种植方式
Cropping system
分隔方式
Root
partition
生育阶段天数 Growth period (d)
出苗期
Emergence stage
苗期
Seedling stage
蕾期
Squaring stage
花铃期
Flowering and boll formation stage
全生育期
Full growth period
2019 2020 2019 2020 2019 2020 2019 2020 2019 2020
SC N 19 Aa 12 Aa 32 Ba 39 Ba 26 Ba 28 Aa 53 Aa 52 Aa 129 BCa 131 Ba
M 19 Aa 12 Aa 33 Ba 39 Ba 26 Ba 28 Aa 51 Aa 54 Aab 128 BCa 133 Ba
S 19 Aa 12 Aa 32 Ba 38 Ba 26 Ba 29 Aa 53 Aa 49 Ab 131 BCa 129 Ba
IC(W) N 19 Aa 12 Aa 34 Aa 43 Aa 26 Aa 28 Aa 54 Aa 54 Aa 133 Aa 136 Aa
M 19 Aa 12 Aa 36 Aa 42 Aa 27 Aa 29 Aa 52 Aa 51 Aab 133 Aa 133 Aa
S 19 Aa 12 Aa 35 Aa 42 Aa 27 Aa 29 Aa 52 Aa 52 Ab 133 Aa 135 Aa
IC(G) N 19 Aa 12 Aa 33 Ba 39 Ba 25 Ba 29 Aa 54 Aa 54 Aa 130 ABa 134 ABa
M 19 Aa 12 Aa 32 Ba 38 Ba 25 Ba 30 Aa 56 Aa 53 Aab 132 ABa 133 ABa
S 19 Aa 12 Aa 32 Ba 39 Ba 26 Ba 30 Aa 53 Aa 52 Ab 131 ABa 132 ABa
IC(P) N 19 Aa 12 Aa 33 Ba 38 Ba 25 Ba 29 Aa 52 Aa 55 Aa 129 Ca 135 ABa
M 19 Aa 12 Aa 33 Ba 38 Ba 24 Ba 30 Aa 52 Aa 54 Aab 128 Ca 134 ABa
S 19 Aa 12 Aa 33 Ba 38 Ba 25 Ba 30 Aa 51 Aa 51 Ab 128 Ca 130 ABa

表2

不同间套作体系产量及间作优势"

年份
Year
处理
Treatment
配对作物
Paired crops (t hm-2)
棉花
Cotton (t hm-2)
土地当量比
LER
偏土地当量比
Partial LER
配对作物相对于棉花的资源竞争力
Aggressivity
种植方式
Cropping system
分隔方式
Root
partition
间作
Inter-
crop
单作
Sole
间作
Inter-
crop
单作
Sole
配对作物
Paired
crops
棉花
Cotton
2019 W/C N 22.20 Aa 17.63 Ab 4.70 Aa 3.87 Ab 1.23 A 0.42 A 0.81 A 0.04 A
M 20.29 Aa 17.81 Ab 5.29 Aa 4.07 Ab 1.25 A 0.38 A 0.87 A -0.16 A
S 23.73 Aa 19.25 Ab 4.51 Aa 4.58 AB 1.07 A 0.41 A 0.66 A 0.24 A
平均值 Mean 22.07 a 18.23 b 4.83 a 4.17 b 1.18 A 0.40 A 0.78 A 0.04 A
G/C N 14.37 Aa 9.72 Aa 4.80 Aa 3.87 Ab 1.38 A 0.53 A 0.86 A 0.30 A
M 15.75 Aa 11.91 Aa 5.17 Aa 4.07 Ab 1.32 A 0.47 A 0.86 A 0.12 A
S 13.77 Aa 12.37 Aa 5.38 Aa 4.58 AB 1.17 A 0.38 A 0.79 A -0.03 A
平均值 Mean 14.63 a 11.33 b 5.11 a 4.17 b 1.29 A 0.46 A 0.83 A 0.13 A
P/C N 4.06 Aa 6.40 Aa 5.75 Aa 3.87 Ab 1.21 A 0.22 A 0.99 A -0.82 A
M 4.41 Aa 5.51 Aa 5.07 Aa 4.07 Ab 1.11 A 0.27 A 0.84 A -0.47 A
S 4.03 Aa 5.71 Aa 5.93 Aa 4.58 Aa 1.10 A 0.23 A 0.87 A -0.59 A
平均值 Mean 4.17 b 5.87 a 5.58 a 4.17 b 1.14 A 0.24 A 0.90 A -0.63 A
2020 W/C N 16.73 Aa 12.78 Ab 4.08 Aa 3.01 Ab 1.35 A 0.44 A 0.91 A -0.03 A
M 16.10 Aa 11.06 Ab 3.99 Aa 3.08 Ab 1.35 A 0.49 A 0.87 A 0.16 A
S 15.05 Aa 12.70 Ab 3.82 Aa 3.15 Ab 1.22 A 0.41 A 0.81 A 0.05 A
平均值 Mean 15.96 a 12.18 b 3.97 a 3.08 b 1.31 A 0.45 A 0.86 A 0.04 A
G/C N 28.12 Aa 22.83 Ab 3.71 Aa 3.01 Ab 1.24 A 0.41 A 0.83 A -0.01A
M 28.71 Aa 22.23 Ab 3.85 Aa 3.08 Ab 1.28 A 0.44 A 0.84 A 0.05 A
S 30.04 Aa 24.69 Ab 3.87 Aa 3.15 Ab 1.24 A 0.42 A 0.82 A 0.02 A
平均值 Mean 28.96 a 23.25 b 3.81 a 3.08 b 1.25 A 0.42 A 0.83 A 0.02 A
P/C N 1.67 Bb 2.20 Ba 3.72 Aa 3.01 Ab 1.09 A 0.27 A 0.83 A -0.44 A
M 1.93 ABb 2.88 ABa 4.23 Aa 3.08 Ab 1.14 A 0.22 A 0.92 A -0.71 A
S 1.96 Ab 3.10 Aa 3.84 Aa 3.15 Ab 1.03 A 0.21 A 0.82 A -0.58 A
平均值 Mean 1.85 b 2.73 a 3.93 a 3.08 b 1.09 A 0.23 A 0.85 A -0.58 A

表3

不同因素对棉花和配对作物产量影响的方差分析表"

变异来源
Source of variance
小麦/棉花Wheat/cotton 大蒜/棉花Garlic/cotton 花生/棉花Peanut/cotton
小麦 Wheat 棉花 Cotton 大蒜 Garlic 棉花 Cotton 花生 Peanut 棉花 Cotton
F P F P F P F P F P F P
年份
Year
76.71 < 0.01 37.97 < 0.01 273.64 < 0.01 65.74 < 0.01 119.43 < 0.01 81.77 < 0.01
种植方式
Cropping systems
30.16 < 0.01 23.78 < 0.01 32.28 < 0.01 32.16 < 0.01 26.81 < 0.01 55.68 < 0.01
分隔方式
Root partitions
1.40 0.27 0.48 0.63 1.14 0.34 2.41 0.11 0.09 0.92 1.49 0.25
年份 × 种植方式
Year × Cropping systems
< 0.01 0.97 0.50 0.49 2.31 0.14 0.51 0.48 2.74 0.11 3.42 0.08
年份 × 分隔方式
Year × Root partitions
1.24 0.31 0.59 0.56 0.97 0.39 0.94 0.41 1.33 0.29 2.65 0.09
种植方式 × 分隔方式
Cropping systems × Root partitions
0.13 0.88 2.26 0.13 0.51 0.61 0.13 0.88 0.28 0.76 0.30 0.75
年份 × 种植方式 × 分隔方式
Year × Cropping systems × Root partitions
0.99 0.39 0.92 0.41 0.37 0.70 0.06 0.95 1.01 0.38 1.62 0.22

表4

不同处理下棉花产量构成差异"

变量
Variate
种植方式
Cropping system
2019 2020
N M S 平均值Mean N M S 平均值Mean
铃重
Boll weight
(g)
SC 5.24 Aa 5.42 Aa 5.64 Aa 5.43 A 5.46 Ba 5.31 Ba 5.25 Ba 5.34 B
IC(W) 5.70 Aa 5.74 Aa 5.76 Aa 5.73 A 5.59 Aa 5.61 Aa 5.77 Aa 5.65 A
IC(G) 5.59 Aa 5.61 Aa 5.69 Aa 5.63 A 5.38 Ba 5.52 Ba 5.39 Ba 5.43 B
IC(P) 5.62 Aa 5.76 Aa 5.76 Aa 5.71 A 5.72 Aa 5.73 Aa 5.61 Aa 5.68 A
平均值 Mean 5.54 a 5.63 a 5.71 a 5.54 a 5.54 a 5.51 a
衣分
Lint percentage
(%)
SC 38.19 Aa 38.04 Aa 37.65 Aa 37.96 A 39.80 Aa 39.69 Aa 40.11 Aa 39.87 A
IC(W) 38.08 Aa 38.29 Aa 37.58 Aa 37.98 A 39.80 Aa 39.92 Aa 39.63 Aa 39.78 A
IC(G) 37.54 Aa 37.96 Aa 38.16 Aa 37.88 A 38.86 Aa 39.88 Aa 39.96 Aa 39.57 A
IC(P) 38.11 Aa 38.33 Aa 38.01 Aa 38.15 A 39.41 Aa 39.79 Aa 39.68 Aa 39.63 A
平均值 Mean 37.98 a 38.155 a 37.85 a 39.47 a 39.82 a 39.85 a
铃数
No. of bolls
(×104 bolls hm-2)
SC 73.54 Ca 74.73 Ca 79.89 Ca 76.06 C 55.07 Ba 57.93 Ba 60.13 Ba 57.71 B
IC(W) 82.33 BCa 92.49 BCa 78.72 BCa 84.51 BC 73.11 Aa 71.39 Aa 66.29 Aa 70.26 A
IC(G) 86.45 ABa 92.15 ABa 96.05 ABa 91.55 AB 68.85 Aa 69.86 Aa 71.81 Aa 70.17 A
IC(P) 101.94 Aa 87.54 Aa 103.15 Aa 97.54 A 65.17 Aa 73.90 Aa 68.32 Aa 69.13 A
平均值 Mean 86.07 a 86.73 a 89.45 a 65.55 a 68.27 a 66.64 a
变异来源
Source of variance
铃重
Boll weight
衣分
Lint
percentage
铃数
No. of bolls
铃重
Boll weight
衣分
Lint
percentage
铃数
No. of bolls
种植方式Cropping system (C) ns ns * * ns *
分隔方式Root partition (R) ns ns ns ns ns ns
种植方式×分隔方式 C × R ns ns ns ns ns ns

表5

不同处理对棉花地上部生物量累积特征值的影响"

年份
Year
种植方式
Cropping system
分隔方式
Root partition
R2 Wm
(×103 kg hm-2)
T1
(DAP)
T2
(DAP)
∆T
(d)
Tm
(d)
Vm
(kg hm-2 d-1)
2019 SC N 0.9300 16.22 63 112 49 87 217.98
M 0.9625 16.33 56 100 44 78 246.36
S 0.9975 17.06 63 107 44 85 255.33
IC(W) N 0.9939 14.92 55 94 38 75 256.82
M 0.9961 14.24 54 83 30 68 315.97
S 0.9958 16.69 55 91 36 73 307.66
IC(G) N 0.9975 14.21 61 101 40 81 235.14
M 0.9840 21.38 66 123 57 94 247.58
S 0.9826 19.01 68 112 43 90 288.07
IC(P) N 0.9586 16.23 65 98 33 82 322.57
M 0.9081 17.59 67 99 32 83 362.38
S 0.9831 16.83 61 110 50 85 223.06
年份
Year
种植方式
Cropping system
分隔方式
Root partition
R2 Wm
(×103 kg hm-2)
T1
(DAP)
T2
(DAP)
∆T
(d)
Tm
(d)
Vm
(kg hm-2 d-1)
2020 SC N 0.9988 11.02 66 104 38 85 189.38
M 0.9978 13.95 72 108 36 90 258.18
S 0.9976 12.36 68 101 33 85 249.06
IC(W) N 1.0000 12.85 75 110 35 92 239.92
M 0.9828 15.92 74 126 52 100 201.13
S 0.9913 17.65 79 134 55 107 210.92
IC(G) N 0.9901 13.40 68 110 42 89 208.14
M 0.9937 15.50 72 123 51 97 198.79
S 0.9999 15.32 74 111 37 93 274.08
IC(P) N 0.9939 12.55 70 102 32 86 258.46
M 0.9943 14.13 67 104 37 86 249.90
S 0.9960 16.19 71 116 45 94 235.09

图3

不同处理的棉花地上部生物量累积 (a): 盛蕾期(2019年出苗后57 d, 2020年出苗后58 d); (b): 初花期(2019年出苗后86 d, 2020年出苗后88 d); (c): 盛花期(2019年出苗后117 d, 2020年出苗后115 d); (d): 盛絮期(2019年出苗后143 d, 2020年出苗后134 d)。缩写同表1。"

图4

不同生育阶段干物质的分配 (a): 盛蕾期(2019年出苗后57 d, 2020年出苗后58 d); (b): 初花期(2019年出苗后86 d, 2020年出苗后88 d); (c): 盛花期(2019年出苗后117 d, 2020年出苗后115 d); (d): 盛絮期(2019年出苗后143 d, 2020年出苗后134 d)。缩写同表1。"

[1] 李小飞, 韩迎春, 王国平, 王占彪, 冯璐, 杨北方, 范正义, 雷亚平, 熊世武, 邢芳芳, 李亚兵. 棉田间套复合体系提升生态系统服务功能研究进展. 棉花学报, 2020, 32: 472-482.
Li X F, Han Y C, Wang G P, Wang Z B, Feng L, Yang B F, Fan Z Y, Lei Y P, Xiong S W, Xing F F, Li Y B. Recent advances in the enhancement of agroecosystem services and functioning by cotton-based intercropping systems. Cotton Sci, 2020, 32: 472-482. (in Chinese with English abstract)
[2] 中国农业科学院棉花研究. 中国棉花栽培学. 上海: 上海科学技术出版社, 2019. pp 346-350.
Institute of Cotton Research of CAAS. Cotton Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2019. pp 346-350. (in Chinese)
[3] Brooker R W, Karley A J, Newton A C, Pakeman R J, Schöb C. Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Funct Ecol, 2016, 30: 98-107.
doi: 10.1111/1365-2435.12496
[4] Li L, Tilman D, Lambers H, Zhang F S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol, 2014, 203: 63-69.
doi: 10.1111/nph.12778
[5] Ren W, Hu L, Zhang J, Sun C, Tang J, Yuan Y, Chen X. Can positive interactions between cultivated species help to sustain modern agriculture? Front Ecol Environ, 2014, 12: 507-514.
doi: 10.1890/130162
[6] 罗华, 王杰, 宋勇, 欧小球, 赵志坚, 唐玲玲, 罗琳. 玉米-大豆间套作模式研究现状及其展望. 作物研究, 2020, 34: 502-506.
Luo H, Wang J, Song Y, Ou X Q, Zhao Z J, Tang L L, Luo L. Research status and prospect of maize and soybean intercropping model. Crop Res, 2020, 34: 502-506. (in Chinese with English abstract)
[7] 党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆. 棉花间作模式中作物养分竞争吸收和积累动态的研究. 植物营养与肥料学报, 2013, 19: 166-173.
Dang X Y, Liu J G, Paniguli, Wang J L, Wei C Z, Li L. Accumulation and competition of nitrogen, phosphorus and potassium in cotton-based intercropping systems in Xinjiang, China. J Plant Nutr Fert, 2013, 19: 166-173. (in Chinese with English abstract)
[8] Zhang L, Vander W W, Zhang S, Li B, Spiertz J H J. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Res, 2007, 103: 178-188.
doi: 10.1016/j.fcr.2007.06.002
[9] 张恩和, 黄高宝. 间套种植复合群体根系时空分布特征. 应用生态学报, 2003, 8: 1301-1304.
Zhang E H, Huang G B. Temporal and spatial distribution characteristics of the crop root in intercropping system. Chin J Appl Ecol, 2003, 8: 1301-1304. (in Chinese with English abstract)
[10] 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. 植物生态学报, 2008, 32: 477-484.
doi: 10.3773/j.issn.1005-264x.2008.02.027
Liu G C, Yang Q F, Li L, Sun J H. Intercropping advantage and contribution of above- and below-ground interactions in wheat-maize intercropping. J Plant Ecol, 2008, 32: 477-484. (in Chinese with English abstract)
[11] 李隆, 杨思存, 孙建好, 李晓林, 张福锁. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999, 10: 197-200.
Li L, Yang S C, Sun J H, Li X L, Zhang F S. Interspecific competition and facilitation in wheat/soybean intercropping system. Chin J Appl Ecol, 1999, 10: 197-200. (in Chinese with English abstract)
[12] Li L, Sun J H, Zhang F S, Li X L, Hengel Z R, Yang S C. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[13] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38: 965-973.
Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and faba bean. Sci Agric Sin, 2005, 38: 965-973 (in Chinese with English abstract).
[14] 沈荔花, 李娜, 阮妙鸿, 林文雄. 间作隔根对玉米/大豆光合、产量及土壤理化性质的影响. 福建农业学报, 2020, 35: 1280-1288.
Shen L H, Li N, Ruan M H, Lin W X. Effects of interactions between roots of intercropped maize and soybean on plant photosynthesis, crop yield, and soil physiochemical properties. Fujian J Agric Sci, 2020, 35: 1280-1288. (in Chinese with English abstract)
[15] Willey R. Intercropping: its importance and research needs: Part I. Competition and yield advantages. Field Crops Abstr, 1979, 32: 1-10.
[16] 薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006, 26: 3631-3640.
Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effects of nitrogen levels on the dynamic changes of cotton plant biomass, nitrogen accumulation characteristics and nitrogen use efficiency after initial flowering. Acta Ecol Sin, 2006, 26: 3631-3640. (in Chinese with English abstract)
[17] Hauggaard N H, Ambus P, Jensen E S. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique. Plant Soil, 2001, 236: 63-74.
doi: 10.1023/A:1011909414400
[18] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248: 305-312.
doi: 10.1023/A:1022352229863
[19] Zhu J, Werf W V D, Anten N P R, Vos J, Evers J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol, 2015, 207: 1213-1222.
doi: 10.1111/nph.13416
[20] Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Werf W V D. Intercropping enhances soil carbon and nitrogen. Global Change Biol, 2015, 21: 1715-1726.
doi: 10.1111/gcb.12738
[21] 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066.
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Res, 2015, 30: 1057-1066. (in Chinese with English abstract)
[22] Li Q S, Wu L K, Chen J, Khan M A, Luo X M, Lin W X. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. J Integr Agric, 2016, 15: 101-110.
doi: 10.1016/S2095-3119(15)61089-9
[23] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1): 129-136.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Effect of above- and below-ground interactions on maize/soybean intercropping advantage. Trans CSAM, 2014, 45(1): 129-136. (in Chinese with English abstract)
[24] Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA, 2016, 113: 6496-6501.
doi: 10.1073/pnas.1523580113
[25] Liang J P, He Z J. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agric Water Manage, 2020, 240: 106277.
doi: 10.1016/j.agwat.2020.106277
[26] 李伶俐, 阮元, 刘伟, 马宗斌, 朱伟. 间套紫花苜蓿对棉花生长发育、产量及棉田土壤微生物和酶活性的影响. 河南农业科学, 2019, 48(6): 52-59.
Li L L, Ruan Y, Liu W, Ma Z B, Zhu W. Effects of intercropping alfalfa on growth and yield of cotton, microorganism and enzyme activities of cotton field soil. J Henan Agric Sci, 2019, 48(6): 52-59. (in Chinese with English abstract)
[27] Li L, Sun J J, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[28] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res, 2001, 71: 173-183.
doi: 10.1016/S0378-4290(01)00157-5
[29] 魏红国. 杏棉间作对棉花冠层结构、光合生产及养分运移特征的影响研究. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2011.
Wei H G. Study on Canopy Structure, Photosynthesis Production and Nutrients Transfer Characteristics of Cotton in Apricot-cotton Intercropping System. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2011. (in Chinese with English abstract)
[30] Huang C D, Liu Q Q, Gou F, Li X L, Zhang C C, van der Werf W, Zhang F S. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Res, 2017, 201: 41-51.
doi: 10.1016/j.fcr.2016.10.021
[31] 齐万海, 柴强. 不同隔根方式下间作小麦玉米的竞争力及产量响应. 中国生态农业学报, 2010, 18: 31-34.
Qi W H, Chai Q. Yield response to wheat/maize competitiveness in wheat/maize intercropping system under different root partition patterns. Chin J Eco-Agric, 2010, 18: 31-34. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00031
[32] Li L, Sun J H, Zhang F S, Guo T W, Bao X G, Smith F A, Smith S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290.
doi: 10.1007/s00442-005-0256-4
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 黄中文,赵团结,盖钧镒. 大豆不同产量水平生物量积累与分配的动态分析[J]. 作物学报, 2009, 35(8): 1483-1490.
[3] 马韫韬;郭焱;展志岗;李保国;Philippe de Reffye. 玉米生长虚拟模型GREENLAB-Maize的评估[J]. 作物学报, 2006, 32(07): 956-963.
[4] 赵秉强;张福锁;李增嘉;李凤超;张新春;申加祥;潘海军;赵甲美;尹玉波;武传杰. 间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ. 间作早春玉米根系数量与活性的空间分布及变化规律[J]. 作物学报, 2001, 27(06): 974-979.
[5] 赵秉强;李凤超;李增嘉;张保仁. 粮菜间套作带型运用规律的研究[J]. 作物学报, 1999, 25(03): 356-362.
[6] 黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用[J]. 作物学报, 1999, 25(01): 16-24.
[7] 王秋杰;寇长林;王永歧;王兴仁;张福锁. 砂地小麦套作花生的产量优势及其与养分利用效率关系的研究[J]. 作物学报, 1999, 25(01): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .