欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1316-1326.doi: 10.3724/SP.J.1006.2023.21037

• 耕作栽培·生理生化 • 上一篇    下一篇

绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应

李盼(), 陈桂平, 苟志文, 殷文(), 樊志龙, 胡发龙, 范虹, 柴强   

  1. 省部共建干旱生境作物学国家重点实验室/甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2022-05-22 接受日期:2022-09-05 出版日期:2023-05-12 网络出版日期:2022-09-19
  • 通讯作者: *殷文, E-mail: yinwen@gsau.edu.cn
  • 作者简介:E-mail: lipan0404@126.com
  • 基金资助:
    国家自然科学基金项目(32101857);国家自然科学基金项目(U21A20218);甘肃省高等学校科研项目(2021B-134);甘肃农业大学伏羲青年人才项目(Gaufx-03Y10);甘肃省重点人才项目(204197083016)

Response on light energy utilization and water production benefit of spring wheat to straw retention in an oasis irrigated area

LI Pan(), CHEN Gui-Ping, GOU Zhi-Wen, YIN Wen(), FAN Zhi-Long, HU Fa-Long, FAN Hong, CHAI Qiang   

  1. State Key Laboratory of Arid Land Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-05-22 Accepted:2022-09-05 Published:2023-05-12 Published online:2022-09-19
  • Contact: *E-mail: yinwen@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32101857);National Natural Science Foundation of China(U21A20218);Gansu Provincial Scientific Project of Colleges and Universities(2021B-134);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10);Important talent of Gansu province(204197083016);Young Science and Technology Talents Supporting Project of Gansu Science and Technology Association(2020-12)

摘要:

针对干旱灌区作物生产中光资源浪费和水分生产效益低等问题, 研究不同秸秆还田方式对春小麦光能利用率、灌溉水生产力及经济效益的影响, 以期为该区筛选适宜春小麦生产的秸秆还田方式提供依据。2014—2016年, 在甘肃省武威绿洲农作基地以春小麦秸秆还田为研究对象, 传统翻耕无秸秆还田为对照, 设4个处理, 包括免耕25~30 cm高茬收割秸秆覆盖(NTSM)、免耕25~30 cm高茬收割秸秆立茬(NTSS)、传统翻耕25~30 cm高茬收割秸秆还田(CTS)、传统翻耕无秸秆还田(CT, 对照), 以期为该区筛选适宜春小麦生产的秸秆还田方式提供依据。结果表明, 秸秆还田(NTSM、NTSS、CTS)较CT提高平均叶面积指数(MLAI)达到14.6%~17.2%、10.4~11.9%、7.3%~9.4%, 提高总叶日积(LAI-D)达到14.6%~17.6%、9.2%~12.3%、8.3%~9.8%, NTSM较NTSS提高MLAI与LAI-D分别为6.6%~7.1%和5.9%~7.2%, NTSM处理利于扩大春小麦光合源。NTSM、NTSS较CT降低了春小麦孕穗期之前MLAI与LAI-D分别为6.1%~7.6%、4.6%~9.8%和6.0%--7.6%、8.1%~10.4%; 相反, NTSM、NTSS较CT提高了春小麦孕穗期之后MLAI分别为38.9%~45.1%、30.7%~32.6%, 春小麦灌浆期至成熟期LAI-D分别提高37.0%~47.5%、28.6%~33.9%, 且NTSM较NTSS提高MLAI与LAI-D分别为6.2%~9.4%和6.5%~10.1%, NTSM有效调节了春小麦生育期内光合源动态关系, 利于花后籽粒灌浆。NTSM、NTSS、CTS较CT春小麦分别增产18.6%~27.3%、16.6%~24.9%、10.2%~18.7%, 光能利用率分别提高7.8%~12.2%、6.5%~11.2%、6.2%~8.4%, 单方灌溉水利用效率分别提高18.6%~27.3%、16.6%~24.9%、10.2%~18.7%, 以NTSM增产与提高水热利用效率幅度较大, 具有高效利用土壤水热资源的优势。同时, NTSM、NTSS较CT总投入减少6.5%~7.3%, 总产值提高11.4%~19.3%和8.6%~17.2%, 纯收益提高32.2%~41.5%和27.8%~37.6%, NTSM因较少的资源投入和较高的经济效益而获得较高的产投比和单方灌溉水效益, NTSM较CTS与CT产投比提高14.2%~16.9%与19.1%~28.8%, 单方灌溉水效益提高16.5%~23.1%与32.2%~41.5%。因此, 免耕25~30 cm高茬收割秸秆覆盖是河西绿洲灌区提高春小麦光能利用和灌溉水生产效益的理想秸秆还田方式。

关键词: 秸秆还田, 免耕, 光能利用, 经济效益, 灌溉水生产效益

Abstract:

Traditional tillage crop production pattern often leads to the waste of light resources and low benefit of water production. The response of light use efficiency, irrigation water productivity, and economic benefits of spring wheat to different straw retention patterns, which providing the theoretical and practical basis for production technologies for farmland resources use efficiency. A field experiment was conducted with various straw retention operations in Wuwei Oasis agricultural base of a typical oasis irrigation region in Gansu province during 2014-2016. Wheat straw retention operations included four treatments [no tillage with 25-30 cm long straw mulching (NTSM), no tillage with 25-30 cm high straw standing (NTSS), conventional tillage with 25-30 cm long straw incorporation (CTS), and conventional tillage with no straw retention (CT, the control)]. The objective of this study is to provide the basis for screening the suitable straw returning method for spring wheat production in this region. The results indicated that, compared with CT, straw retention (NTSM, NTSS, and CTS) improved the mean leaf area index (MLAI) by 14.6%-17.2%, 10.4-11.9%, 7.3%-9.4%, and improved total leaf area duration (LAI-D) by 14.6%-17.6%, 9.2%-12.3%, 8.3%-9.8%, respectively. Compared with NTSS, NTSM improved MLAI and LAI-D by 6.6%-7.1% and 5.9%-7.2%, respectively, which facilitating the expansion of photosynthetic sources in spring wheat. Compared with CT, NTSM and NTSS reduced MLAI and LAI-D by 6.1%-7.6%, 4.6%-9.8%, 6.0%-7.6%, and 8.1%-10.4% before booting stage of spring wheat, respectively. On the contrary, NTSM and NTSS improved MLAI after booting stage of spring wheat by 38.9%-45.1% and 30.7%-32.6%, respectively, and LAI-D from filling stage to full-riping stage of spring wheat was improved by 37.0%-47.5% and 28.6%-33.9%, respectively, compared with CT. NTSM effectively regulated the photosynthetic source dynamics during the growth period of spring wheat and facilitated post-flowering grain filling. Compared with CT, NTSM, NTSS, and CTS increased grain yield of spring wheat by 18.6%-27.3%, 16.6%-24.9%, and 10.2%-18.7%, respectively, increased light use efficiency by 7.8%-12.2%, 6.5%-11.2%, and 6.2%-8.4%, respectively, increased water use efficiency per cubic meter irrigation water by 18.6%-27.3%, 16.6%-24.9%, and 10.2%-18.7%, respectively. NTSM had the advantage of efficient utilization of soil water and heat resources by increasing grain yield and improving water and heat use efficiency to a greater extent. Meanwhile, NTSM and NTSS reduced the total inputs by 6.5%-7.3%, increased total output by 11.4%-19.3% and 8.6%-17.2%, and increased net income by 32.2%- 41.5% and 27.8%-37.6%, compared with CT, respectively. SM had a higher input-output ratio and benefit per cubic meter irrigation water due to less resource input and higher economic benefits. Compared with CTS and CTNT, NTSM increased input-output ratio by 14.2%-16.9% and 19.1%-28.8%, and increased benefit per cubic meter irrigation water by 16.5%-23.1% and 32.2%-41.5%, respectively. Therefore, no tillage with 25-30 cm long straw mulching was the ideal way of straw retention to improve light energy utilization and water production benefit of spring wheat in Hexi oasis irrigated region.

Key words: straw retention, no tillage, light energy utilization, economic benefits, irrigation water production efficiency

图1

春小麦全生育期平均叶面积指数及其叶面积指数动态对秸秆还田方式的响应 NTSM: 免耕25~30 cm高茬收割秸秆覆盖; NTSS: 免耕25~30 cm高茬收割秸秆立茬; CTS: 传统翻耕25~30 cm高茬收割秸秆还田; CT: 传统翻耕无秸秆还田。相同年份不同小写字母表示处理间差异在 0.05概率水平差异显著。"

表1

不同秸秆还田方式下春小麦各生育阶段的叶日积差异"

年份
Year
处理Treatment 小麦生育阶段 Wheat growth stage
拔节-孕穗期Jointing booting 孕穗-抽穗期Booting heading 抽穗-灌浆期Heading filling 灌浆-蜡熟期Filling doughing 蜡熟-完熟期Doughing maturing 总和
Total
2014 NTSM 46.09 b 80.42 a 89.85 a 59.31 a 19.21 a 294.87 a
NTSS 44.95 b 77.29 ab 85.54 b 55.48 b 17.78 b 281.04 ab
CTS 50.11 a 80.19 a 81.80 c 51.30 c 14.45 c 277.85 b
CT 49.86 a 75.37 b 74.52 d 45.06 d 11.43 d 256.24 c
2015 NTSM 46.66 b 72.60 a 93.07 a 58.57 a 25.69 a 296.58 a
NTSS 46.42 b 70.97 ab 89.24 ab 53.91 b 22.60 b 283.15 ab
CTS 51.97 a 73.21 a 84.41 b 49.04 c 18.06 c 276.69 b
CT 50.48 a 67.63 b 76.84 c 43.13 d 14.01 d 252.09 c
2016 NTSM 41.29 bc 90.77 a 113.58 a 56.69 a 17.82 a 320.16 a
NTSS 39.39 c 86.69 b 109.10 b 53.55 ab 16.39 b 305.12 ab
CTS 44.62 a 90.79 a 104.12 c 49.15 c 13.69 c 302.37 ab
CT 43.95 ab 85.70 b 95.26 d 43.36 d 11.03 d 279.29 b

表2

不同秸秆还田方式下春小麦产量及与经济效益"

年份Year 处理Treatment 产量 Yield (kg hm-2) 产值
Output
(Yuan hm-2)
投入Cost (Yuan hm-2) 纯收益
Net return
(Yuan hm-2)
产投比Input-output ratio
籽粒
Grain
秸秆
Straw
劳动力与机械
Labor and
machinery
农资Agricultural
materials
总和Total
2014 NTSM 7618 a 10297 a 19503 a 2625 b 5353 a 7978 b 11525 a 2.44 a
NTSS 7369 a 10019 a 18849 a 2625 b 5353 a 7978 b 10871 b 2.36 a
CTS 6957 b 10421 a 17941 b 3225 a 5353 a 8578 a 9363 c 2.09 b
CT 6275 c 10123 a 17085 c 3225 a 5353 a 8578 a 8507 d 1.99 c
2015 NTSM 7203 a 9598 a 18366 a 3075 b 5217 a 8292 b 10074 a 2.21 a
NTSS 7079 a 9598 a 18069 a 3075 b 5217 a 8292 b 9777 a 2.18 a
CTS 6690 b 9903 a 17197 b 3650 a 5217 a 8867 a 8330 b 1.94 b
CT 6071 c 9598 a 16486 c 3650 a 5217 a 8867 a 7619 c 1.86 c
2016 NTSM 8035 a 10876 a 20619 a 2025 b 5243 a 7268 b 13351 a 2.84 a
NTSS 7886 ab 10862 a 20259 ab 2025 b 5243 a 7268 b 12991 a 2.79 a
CTS 7492 b 10811 a 19303 b 2600 a 5243 a 7843 a 11460 b 2.46 b
CT 6313 c 10642 a 17281 c 2600 a 5243 a 7843 a 9438 c 2.20 c

图2

不同秸秆还田方式下春小麦的光能利用率 处理同图1。相同年份不同小写字母表示处理间差异在0.05概率水平差异显著。"

图3

不同秸秆还田方式下春小麦的单方灌溉水利用效率和效益 处理同图1。相同年份不同小写字母表示处理间差异在0.05概率水平差异显著。"

图4

春小麦叶日积与其籽粒产量、光能利用率的关系"

[1] 王月超, 李传兴, 代兴龙, 周晓燕, 张宇, 李华英, 贺明荣. 栽培模式对冬小麦光能利用和产量的影响. 应用生态学报, 2015, 26: 2707-2713.
Wang Y C, Li C X, Dai X L, Zhou X Y, Zhang Y, Li H Y, He M R. Effects of cultivation patterns on the radiation use and grain yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2707-2713. (in Chinese with English abstract)
[2] 董宝娣, 刘会灵, 王亚凯, 乔匀周, 张明明, 杨红, 靳乐乐, 刘孟雨. 作物高效用水生理生态调控机制研究. 中国生态农业学报, 2018, 26: 1465-1475.
Dong B D, Liu H L, Wang Y K, Qiao Y Z, Zhang M M, Yang H, Jin L L, Liu M Y. Physio-ecological regulating mechanisms for highly efficient water use of crops. Chin J Eco-Agric, 2018, 26: 1465-1475. (in Chinese with English abstract)
[3] 郭瑶, 陈桂平, 殷文, 冯福学, 赵财, 于爱忠, 柴强. 内陆灌区小麦秸秆还田对玉米光能利用及水分生产效益的影响. 中国生态农业学报, 2018, 26: 847-855.
Guo Y, Chen G P, Yin W, Feng F X, Zhao C, Yu A Z, Chai Q. Effect of wheat straw retention on light energy utilization and water production benefits of maize in inland irrigated region. Chin J Eco-Agric, 2018, 26: 847-855. (in Chinese with English abstract)
[4] Gomez-munoz B, Jensen L S, Munkholm L, Olesen J E, Hasen E M, Bruun S. Long-term effect of tillage and straw retention in conservation agriculture systems on soil carbon storage. Soil Sci Soc Am J, 2021, 85: 1465-1478.
doi: 10.1002/saj2.v85.5
[5] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4764-4776.
doi: 10.3864/j.issn.0578-1752.2020.23.004
Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.23.004
[6] 隋鑫, 霍海南, 鲍雪莲, 何红波, 张旭东, 梁超, 解宏图. 覆盖作物的种植现状及其对下茬作物生长和土壤环境影响的研究进展. 应用生态学报, 2021, 32: 2666-2674.
doi: 10.13287/j.1001-9332.202108.027
Sui X, Huo H N, Bao X L, He H B, Zhang X D, Liang C, Xie H T. Research advances on cover crop plantation and its effects on subsequent crop and soil environment. Chin J Appl Ecol, 2021, 32: 2666-2674. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.202108.027
潘剑玲, 代万安, 尚占环, 郭瑞英. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013, 21: 526-535.
Pan J L, Dai W A, Shang Z H, Guo R Y. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chin J Eco-Agric, 2013, 21: 526-535. (in Chinese with English abstract)
[7] 王维钰, 乔博, Akhtar K, 袁率, 任广鑫, 冯永忠. 免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响. 中国农业科学, 2016, 49: 2136-2152.
doi: 10.3864/j.issn.0578-1752.2016.11.010
Wang W Y, Qiao B, Akhtar K, Yuan S, Ren G X, Feng Y Z. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage. Sci Agric Sin, 2016, 49: 2136-2152. (in Chinese with English abstract)
[8] Yin W, Chai Q, Guo Y, Fan Z L, Hu F L, Fan H, Zhao C, Yu A Z, Coulter J A. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Res, 2020, 249: 107758.
doi: 10.1016/j.fcr.2020.107758
[9] Xing X G, Ma X Y. Analysis of cracking potential and modification of soil-water characteristic curve by adding wheat residues. Soil Sci Soc Am J, 2019, 83: 1299-1308.
doi: 10.2136/sssaj2018.12.0491
[10] Huang T T, Yang N, Lu C, Qin X L, Siddique K H M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res, 2021, 214: 105171.
doi: 10.1016/j.still.2021.105171
[11] 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54: 596-607.
doi: 10.3864/j.issn.0578-1752.2021.03.013
Zheng F J, Wang X, Li S P, Liu X T, Liu Z P, Lu J J, Wu X P, Xi J L, Zhang J C, Li Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Sci Agric Sin, 2021, 54: 596-607. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.013
[12] Liu P, He J, Li H W, Wang Q J, Lu C Y, Zheng K, Liu W Z, Zhao H B, Lou S Y. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: a meta-analysis. Int J Plant Prod, 2019, 13: 347-367.
doi: 10.1007/s42106-019-00060-w
[13] 吴科生, 车宗贤, 包兴国, 张久东, 卢秉林, 杨新强, 杨蕊菊. 河西绿洲灌区灌漠土长期秸秆还田土壤肥力和作物产量特征分析. 草业学报, 2021, 30(12): 59-70.
Wu K S, Che Z X, Bao X G, Zhang J D, Lu B L, Yang X Q, Yang R J. Analysis of soil fertility and crop yield characteristics following long-term straw return to the field in a Hexi Oasis irrigated area. Acta Pratac Sin, 2021, 30(12): 59-70. (in Chinese with English abstract)
[14] 姜英, 王峥宇, 廉宏利, 王美佳, 苏业涵, 田平, 隋鹏祥, 马梓淇, 王英俨, 孟广鑫, 孙悦, 李从锋, 齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响. 中国农业科学, 2020, 53: 3071-3082.
doi: 10.3864/j.issn.0578-1752.2020.15.008
Jiang Y, Wang Z Y, Lian H L, Wang M J, Su Y H, Tian P, Sui P X, Ma Z Q, Wang Y Y, Meng G X, Sun Y, Li C F, Qi H. Effects of tillage and straw incorporation method on root trait at silking stage and grain yield of spring maize in northeast China. Sci Agric Sin, 2020, 53: 3071-3082. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.15.008
[15] 殷文, 柴强, 樊志龙, 胡发龙, 赵财, 于爱忠. 绿洲灌区典型种植模式的水热利用与碳排放和能值分析. 应用生态学报, 2018, 29: 3658-3668.
doi: 10.13287/j.1001-9332.201811.022
Yin W, Chai Q, Fan Z, Hu F L, Zhao C, Yu A Z. Energy analysis, water-heat utilization, and carbon emission of typical cropping patterns in the oasis irrigation area. Chin J Appl Ecol, 2018, 29: 3658-3668. (in Chinese with English abstract)
[16] 张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI动态模拟模型的建立与检验. 作物学报, 2007, 33: 612-619.
Zhang B, Zhao M, Dong Z Q, Li J G, Chen C Y, Sun R. Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin, 2007, 33: 612-619. (in Chinese with English abstract)
[17] 王嘉男, 李玲玲, 谢军红, 王林林, 郭喜军, 康彩睿, 刘畅, Effah Z, 王进斌. 半干旱区保护性耕作对旱作春小麦光合特性和产量形成的影响. 麦类作物学报, 2020, 40: 1493-1500.
Wang J N, Li L L, Xie J H, Wang L L, Guo X J, Kang C R, Liu C, Effah Z, Wang J B. Effects of conservation tillage on photosynthesis and yield formation of rain-fed spring wheat in semi-arid areas. J Triticeae Crops, 2020, 40: 1493-1500. (in Chinese with English abstract)
[18] 李义博, 陶福禄. 提高小麦光能利用效率机理的研究进展. 中国农业气象, 2022, 43: 93-111.
Li Y B, Tao F L. Research progress on the mechanism of high light use efficiency in wheat. Chin J Agromet, 2022, 43: 93-111. (in Chinese with English abstract)
[19] 张珂珂, 周苏玫, 张嫚, 石珊珊, 尹钧. 减氮补水对小麦高产群体光合性能及产量的影响. 应用生态学报, 2016, 27: 863-872.
doi: 10.13287/j.1001-9332.201603.006
Zhang K K, Zhou S M, Zhang M, Shi S S, Yin J. Effects of reduced nitrogen application and supplemental irrigation on photosynthetic characteristics and grain yield in high-yield populations of winter wheat. Chin J Appl Ecol, 2016, 27: 863-872. (in Chinese with English abstract)
[20] 李静静, 李从锋, 李连禄, 丁在松, 赵明. 苗带深松条件下秸秆覆盖对春玉米土壤水温及产量的影响. 作物学报, 2014, 40: 1787-1796.
doi: 10.3724/SP.J.1006.2014.01787
Li J J, Li C F, Li L L, Ding Z S, Zhao M. Effect of straw mulching on soil temperature, soil moisture and spring maize yield under seedling strip subsoiling. Acta Agron Sin, 2014, 40: 1787-1796. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01787
[21] 张向前, 张贺飞, 钱益亮. 不同秸秆覆盖模式下小麦植株性状、光合及产量的差异. 麦类作物学报, 2016, 36: 120-127.
Zhang X Q, Zhang H F, Qian Y L. Differences in plant traits, photosynthesis and yield of wheat under different straw mulching modes. J Triticeae Crops, 2016, 36: 120-127. (in Chinese with English abstract)
[22] Siczek A, Horn R, Lipiec J, Usowize B, Lukowski M. Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions. Soil Tillage Res, 2015, 153: 175-184.
doi: 10.1016/j.still.2015.06.006
[23] 郭瑶, 陈桂平, 殷文, 赵财, 于爱忠, 樊志龙, 胡发龙, 范虹, 柴强. 地膜玉米免耕轮作小麦的减水减氮效应. 中国生态农业学报, 2021, 29: 389-399.
Guo Y, Chen G P, Yin W, Zhao C, Yu A Z, Fan Z L, Hu F L, Fan H, Chai Q. Effects of reducing water and nitrogen supplies in rotated wheat with previous plastic mulched maize. Chin J Eco- Agric, 2021, 29: 389-399. (in Chinese with English abstract)
[24] 赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米轮作系统中干物质生产和水分利用效率的影响. 作物学报, 2014, 40: 1797-1807.
doi: 10.3724/SP.J.1006.2014.01797
Zhao Y L, Guo H B, Xue Z W, Mu X Y, Li C H. Effects of tillage and straw returning on biomass and water use efficiency in a winter wheat and summer maize rotation system. Acta Agron Sin, 2014, 40: 1797-1807. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01797
[25] 韩上, 武际, 李敏, 陈峰, 王允青, 程文龙, 唐杉, 王慧, 郭熙盛, 卢昌艾. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26: 276-284.
Han S, Wu J, Li M, Chen F, Wang Y Q, Cheng W L, Tang S, Wang H, Guo X S, Lu C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. J Plant Nutr Fert, 2020, 26: 276-284. (in Chinese with English abstract)
[26] 张仁陟, 黄高宝, 蔡立群, 罗珠珠, 李玲玲, 谢军红. 几种保护性耕作措施在黄土高原旱作农田的实践. 中国生态农业学报, 2013, 21: 61-69.
Zhang R Z, Huang G B, Cai L Q, Luo Z Z, Li L L, Xie J H. Dry farmland practice involving multi-conservation tillage measures in the Loess Plateau. Chin J Eco-Agric, 2013, 21: 61-69. (in Chinese with English abstract)
[27] 张莀茜, 杭雅文, 李福建, 朱新开, 李春燕, 丁锦峰, 朱敏, 郭文善. 稻秸还田年数和氮肥运筹对小麦出苗和幼苗形态及生理特性的影响. 核农学报, 2020, 34: 1805-1813.
doi: 10.11869/j.issn.100-8551.2020.08.1805
Zhang C X, Hang Y W, Li F J, Zhu X K, Li C Y, Ding J F, Zhu M, Guo W S. Effects of rice straw returning and nitrogen fertilizer on seedling emergence and morphological and physiological characteristics of wheat. Acta Agric Nucl Sin, 2020, 34: 1805-1813. (in Chinese with English abstract)
[28] 马建涛, 柴守玺, 程宏波, 常磊. 农田秸秆覆盖技术及其应用研究进展. 生态学杂志, 2022, 41: 597-602.
Ma J T, Chai S X, Cheng H B, Chang L. Research progress of straw mulching technology and its application in farmland. Chin J Ecol, 2022, 41: 597-602. (in Chinese with English abstract)
[29] Ali S, Xu Y Y, Ma X C, Jia Q M, Jia Z K. Improvement in winter wheat productivity through regulating PSII photochemistry, photosynthesis and chlorophyll fluorescence under deficit irrigation conditions. J Integr Agric, 2022, 21: 654-665.
doi: 10.1016/S2095-3119(20)63409-8
[30] 李念念, 孙敏, 高志强, 张娟, 张慧芋, 梁艳妃, 杨清山, 杨珍平, 邓妍. 极端年型旱地麦田深松和覆盖播种水分消耗与植株氮素吸收、利用关系的研究. 中国农业科学, 2018, 51: 3455-3469.
doi: 10.3864/j.issn.0578-1752.2018.18.003
Li N N, Sun M, Gao Z Q, Zhang J, Zhang H Y, Liang Y F, Yang Q S, Yang Z P, Deng Y. A Study on the relationship between water consumption and nitrogen absorption, utilization under sub-soiling during the fallow period plus mulched-sowing in humid and dry years of dry land wheat. Sci Agric Sin, 2018, 51: 3455-3469. (in Chinese with English abstract)
[31] 王玉玲, 李军. 黄土旱塬区平衡施肥下不同土壤耕作模式的蓄水纳墒及作物增产增收效应研究. 植物营养与肥料学报, 2016, 22: 151-163.
Wang Y L, Li J. Study on soil water storage, crop yields and incomes under different soil tillage patterns with balance fertilization in the Loess Dryland region. J Plant Nutr Fert, 2016, 22: 151-163. (in Chinese with English abstract)
[1] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[2] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[3] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[4] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[5] 王玉珑, 于爱忠, 吕汉强, 王琦明, 苏向向, 柴强. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671-2679.
[6] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[7] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
[8] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[9] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[10] 冯珺珩,黄金凤,刘天奇,曹凑贵,李成芳. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250-1259.
[11] 李昊昱,孟兆良,庞党伟,陈金,侯永坤,崔海兴,金敏,王振林,李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J]. 作物学报, 2019, 45(6): 893-903.
[12] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[13] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[14] 陈金,庞党伟,韩明明,尹燕枰,郑孟静,骆永丽,王振林*,李勇*. 耕作模式对土壤生物活性与养分有效性及冬小麦产量的影响[J]. 作物学报, 2017, 43(08): 1245-1253.
[15] 秦都林,王双磊,刘艳慧,聂军军,赵娜,毛丽丽,宋宪亮,孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响[J]. 作物学报, 2017, 43(07): 1030-1042.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .