欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1305-1315.doi: 10.3724/SP.J.1006.2023.22026

• 耕作栽培·生理生化 • 上一篇    下一篇

1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应

刘二华1,2,3(), 周广胜1,2,3,4,*(), 武炳义2, 宋艳玲1,3, 何奇瑾4, 吕晓敏1,3, 周梦子1,3   

  1. 1中国气象科学研究院, 北京 100081
    2复旦大学大气科学研究院, 上海 200439
    3中国气象科学研究院与郑州大学生态气象联合实验室, 河南郑州 450001
    4中国农业大学资源与环境学院, 北京 100193
  • 收稿日期:2022-04-30 接受日期:2022-10-10 出版日期:2023-05-12 网络出版日期:2022-10-31
  • 通讯作者: *周广胜, E-mail: zhougs@cma.gov.cn
  • 作者简介:E-mail: leh4179@163.com
  • 基金资助:
    国家重点研究计划项目(2018YFA0606103);国家自然科学基金重点项目(42130514);国家自然科学基金重点项目(4213000565);中国气象科学研究院基本科研业务费专项(2020Z004)

Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice

LIU Er-Hua1,2,3(), ZHOU Guang-Sheng1,2,3,4,*(), WU Bing-Yi2, SONG Yan-Ling1,3, HE Qi-Jin4, LYU Xiao-Min1,3, ZHOU Meng-Zi1,3   

  1. 1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
    2Institute of Atmospheric Sciences, Fudan University, Shanghai 200439, China
    3Joint Eco-Meteorological Laboratory of Chinese Academy of Meteorological Sciences and Zhengzhou University, Zhengzhou 450001, Henan, China
    4College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2022-04-30 Accepted:2022-10-10 Published:2023-05-12 Published online:2022-10-31
  • Contact: *E-mail: zhougs@cma.gov.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFA0606103);National Natural Science Foundation of China(42130514);National Natural Science Foundation of China(4213000565);Basic Research Fund of Chinese Academy of Meteorological Sciences(2020Z004)

摘要:

作物生殖生长期长度与作物产量和品质密切相关。为深入探究作物生殖生长期长度(reproductive growth period lengths, RGLs)对气候变化和技术进步的响应, 基于1981—2010年长江中下游地区单季稻生殖生长期和气象数据, 量化不同RGLs (孕穗期—抽穗期(booting to heading, BDHD)、抽穗期—乳熟期(heading to milking, HDMS)、乳熟期—成熟期(milking to maturity, MSMD)和孕穗期—成熟期(booting to maturity, BDMD))对平均温度(mean temperature, TEM)、累积降水量(cumulative precipitation, PRE)和累积日照时数(cumulative sunshine duration, SSD)的敏感性, 并分离气候变化和技术进步对不同RGLs的影响。结果表明, 1981—2010年长江中下游地区单季稻BDMD呈延长趋势(0.24 d a-1), 其中, HDMS延长趋势最明显(0.16 d a-1)。气候因子中高温和寡照不利于单季稻不同RGLs延长, 其中, TEM对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为-50.0%、-50.7%和-21.9%, SSD对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为-47.2%、-48.7%和-67.6%。技术进步弥补了气候变化对不同RGLs变化趋势的不利影响。研究表明, 技术进步可能是当前单季稻稳产高产和趋利避害的主要手段, 未来可以采用较长生殖生长期和耐热性品种来适应持续的气候变化。

关键词: 单季稻, 气候变化, 生殖生长期, 技术进步

Abstract:

Crop growth period length is closely linked to climate change and technological progress. Even though the extensive researches conducting on crop growth period length variation and its response to climate change, particularly temperature change, the response of reproductive growth periods lengths (RGLs) to climate change and technological progress remains unclear. Based on the reproductive growth periods and meteorological data of single-cropping rice in the middle and lower reaches of the Yangtze River (MLYR) during 1981?2010, the trends of the RGLs (including booting to heading (BDHD), heading to milking (HDMS), milking to maturity (MSMD), and booting to maturity (BDMD)) and climatic variations were analyzed. In addition, to explore the confounding effects of climate change and technological progress on the RGLs, the sensitivities of the RGLs to mean temperature (TEM), cumulative precipitation (PRE), and cumulative sunshine duration (SSD) were measured. The results showed that the BDMD had an extension trend (0.24 d a-1), among which the extension trend in the HDMS (0.16 d a-1) was the most obvious in RGLs, while the extension trends of BDHD (0.03 d a-1) and MSMD (0.05 d a-1) were not significant. High temperature and low sunshine duration were unfavorable to the extension of the RGLs. The mean relative contributions of TEM to the BDHD, HDMS, and MSMD were -50.0%, -50.7%, and -21.9%, which were -47.2%, -48.7%, and -67.6% in terms of SSD, respectively. Technological progress compensated for the adverse impacts of climate change on the trends of different RGLs. These results suggested that cultivar selection and agronomic management were the effective adaptation strategies benefiting for the stable and high yield of single-cropping rice. Single-cropping rice cultivar with longer RGLs and heat-tolerant may be suitable to cope with the continuous climate change in the future.

Key words: single-cropping rice, climate change, reproductive growth period lengths, technological progress

图1

10个气象站点地理位置 JXH、JZJ、HGS、HXY、HFX、HZX、SDZ、SGP、CFD和CYY分别表示兴化站、镇江站、固始站、信阳站、房县站钟祥站、大竹站、高坪站、丰都站和酉阳站。矢量地图数据来源: 全国地理信息资源目录服务系统(https://www.webmap.cn/)。"

图2

1981-2010年长江中下游地区单季稻生殖生长期和生殖生长阶段长度变化趋势 a、b、c、d、e、f、g、h、i和j分别表示分蘖期、孕穗期、抽穗期、乳熟期、成熟期、分蘖期-孕穗期、孕穗期-抽穗期、抽穗期-乳熟期、乳熟期-成熟期和孕穗期-成熟期。各指标变化趋势由1981-2010年观测的各生殖生长期时间序列依据公式(1)计算得到。*表示在0.05概率水平差异显著, no表示统计不显著。矢量地图数据来源: 全国地理信息资源目录服务系统(https://www.webmap.cn/)。"

图3

不同生殖生长期气候因子变化特征 a、b和c分别表示不同生殖生长期的平均温度、累积降水量和累计日照时数; d、e和f分别表示平均温度、累积降水量和累积日照时数的变化趋势。TEM、PRE和SSD分别表示平均温度、累积降水量和累积日照时数。TDBD、BDHD、HDMS、MSMD和BDMD分别表示分蘖期-孕穗期、孕穗期-抽穗期、抽穗期-乳熟期、乳熟期-成熟期和孕穗期-成熟期。各指标变化趋势由1981-2010年观测的气象数据时间序列依据公式(1)计算得到。"

表1

面板模型中不同生殖生长期对平均温度、累计降水量和累计日照时数的相关系数"

生殖生长阶段
Reproductive growth periods lengths (RGLs)
平均温度敏感性Mean temperature sensitivity (β1) 累积降水量敏感性Cumulative precipitation sensitivity (β2) 累积日照时数敏感性Cumulative sunshine duration sensitivity (β3) 决定系数
Determination
coefficient (R2)
分蘖期-孕穗期
Tillering−Booting (TDBD)
-3.74** 0.010** 0.09** 0.65
孕穗期-抽穗期
Booting−Heading (BDHD)
-0.77** 0.010** 0.07** 0.59
抽穗期-乳熟期
Heading−Milking (HDMS)
-1.00** 0.008** 0.08** 0.50
乳熟期-成熟期
Milking−Maturity (MSMD)
-1.17** 0.007* 0.07** 0.80
孕穗期-成熟期
Booting−Maturity (BDMD)
-2.08** 0.008** 0.04** 0.72

表2

标准化面板模型中不同生殖生长期对平均温度、累计降水量和累计日照时数的相关系数"

生殖生长阶段
Reproductive growth periods lengths (RGLs)
平均温度敏感性Mean temperature sensitivity (β1) 累积降水量敏感性Cumulative precipitation sensitivity (β2) 累积日照时数敏感性Cumulative sunshine duration sensitivity (β3)
分蘖期-孕穗期Tillering−Booting (TDBD) -0.40** 0.08* 0.74**
孕穗期-抽穗期Booting−Heading (BDHD) -0.47** 0.16** 0.65**
抽穗期-乳熟期Heading−Milking (HDMS) -0.43** 0.10* 0.65**
乳熟期-成熟期Milking−Maturity (MSMD) -0.52** 0.09* 0.55**
孕穗期-成熟期Booting−Maturity (BDMD) -0.54** 0.12** 0.32**

图4

气候变化和技术进步对单季稻不同生殖生长期变化趋势的影响 T_cli、T_tec、T_cli_tec分别表示气候因素、技术进步、气候因素和技术进步综合作用对不同生殖生长期长度的影响趋势。生殖生长期长度缩写同图3。"

图5

气候变化和技术进步对单季稻生殖生长期长度的平均贡献 a表示气候变化和技术进步对不同生殖生长期的平均贡献; b表示气候因子对不同生殖生长期的平均相对贡献。CRGL_cli和CRGL_tec分别表示气候因素和技术进步对不同生殖生长期长度的平均贡献; RCRGL_TEM、RCRGL_PRE和RCRGL_SSD分别表示平均温度、累积降水量和累积日照时数对不同生殖生长期长度的平均相对贡献。生殖生长期长度缩写同图3。"

[1] Liu Y J, Bachofen C, Wittwer R, Silva D G, Sun Q, Klaus V H, Buchmann N. Using PhenoCams to track crop phenology and explain the effects of different cropping systems on yield. Agric Syst, 2022, 195: 103306.
doi: 10.1016/j.agsy.2021.103306
[2] van Vliet A J H, Bron W A, Mulder S, van der Slikke W, Odé B. Observed climate-induced changes in plant phenology in the Netherlands. Reg Environ Change, 2013, 14: 997-1008.
[3] Liu F S, Chen Y, Shi W J, Zhang S, Tao F L, Ge Q S. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J Geogr Sci, 2017, 27: 1085-1099.
doi: 10.1007/s11442-017-1423-3
[4] Mohapatra S, Tripathy S K, Mohanty A K, Tripathy S. Effect of heat stress on yield and economics of rice (Oryza sativa L.) cultivars under different sowing dates. J Agrometeorol, 2021, 23: 38-45.
doi: 10.54386/jam.v23i1
[5] Wang Z B, Chen J, Tong W J, Xu C C, Fu C. Impacts of climate change and varietal replacement on winter wheat phenology in the North China Plain. Int J Plant Prod, 2018, 12: 251-263.
doi: 10.1007/s42106-018-0024-0
[6] Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, Liu H Y, Ma Y C, Ding Y H, Friedlingstein P, Liu C Z, Tan K, Yu Y Q, Zhang T Y, Fang J Y. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43-51.
doi: 10.1038/nature09364
[7] Liu Y J, Qin Y, Ge Q S, Dai J H, Chen Q M. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan province, China. J Geogr Sci, 2017, 27: 1072-1084.
doi: 10.1007/s11442-017-1422-4
[8] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015, 200: 135-143.
doi: 10.1016/j.agrformet.2014.09.011
[9] Wang Z, Chen J, Li Y, Li C, Zhang L, Chen F. Effects of climate change and cultivar on summer maize phenology. Int J Plant Prod, 2016, 10: 509-526.
[10] Li N, Li Y, Biswas A, Wang J H, Dong H Z, Chen J H, Liu C C, Fan X Y. Impact of climate change and crop management on cotton phenology based on statistical analysis in the main-cotton- planting areas of China. J Clean Prod, 2021, 298: 126750.
doi: 10.1016/j.jclepro.2021.126750
[11] Bai H Z, Xiao D P. Spatiotemporal changes of rice phenology in China during 1981-2010. Theor Appl Climatol, 2020, 140: 1483-1494.
doi: 10.1007/s00704-020-03182-8
[12] Wang X H, Ciais P, Li L, Ruget F, Vuichard N, Viovy N, Zhou F, Chang J F, Wu X C, Zhao H F. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991-2012. Agric For Meteorol, 2017, 233: 1-11.
[13] Ye T, Zong S, Kleidon A, Yuan W P, Wang Y, Shi P J. Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects. Clim Change, 2019, 155: 127-143.
doi: 10.1007/s10584-019-02450-5
[14] Zhang S, Tao F L, Zhang Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981-2009. Eur J Agron, 2014, 54: 70-83.
doi: 10.1016/j.eja.2013.12.001
[15] Li Z G, Yang P, Tang H J, Wu W B, Yin H, Liu Z H, Zhang L. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg Environ Change, 2013, 14: 39-48.
doi: 10.1007/s10113-013-0503-x
[16] Mo F, Sun M, Liu X Y, Wang J Y, Zhang X C, Ma B L, Xiong Y C. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Res, 2016, 196: 337-347.
doi: 10.1016/j.fcr.2016.06.024
[17] Wang H L, Gan Y T, Wang R Y, Niu J Y, Zhao H, Yang Q G, Li G C. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric For Meteorol, 2008, 148: 1242-1251.
doi: 10.1016/j.agrformet.2008.03.003
[18] Wang Z B, Chen J, Xing F F, Han Y C, Chen F, Zhang L F, Li Y B, Li C D. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci Rep, 2017, 7: 6628.
doi: 10.1038/s41598-017-07056-4 pmid: 28747769
[19] Xiao D P, Zhao Y X, Bai H Z, Hu Y K, Cao J S. Impacts of climate warming and crop management on maize phenology in northern China. J Arid Land, 2019, 11: 892-903.
doi: 10.1007/s40333-019-0028-3
[20] Fatima Z, Ur-Rehman A, Abbas G, Iqbal P, Zakir I, Khan M A, Kamal G M, Ahmed M, Ahmad S. Quantification of climate warming and crop management impacts on phenology of pulses- based cropping systems. Int J Plant Prod, 2020, 15: 107-123.
doi: 10.1007/s42106-020-00112-6
[21] Li K N, Yang X G, Tian H Q, Pan S F, Liu Z J, Lu S. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int J Biometeorol, 2016, 60: 21-32.
doi: 10.1007/s00484-015-1002-1 pmid: 25962358
[22] Liu Y J, Chen Q M, Ge Q S, Ge Q S, Dai J H, Qin Y, Dai L, Zou X T, Chen J. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric For Meteorol, 2018, 248: 518-526.
doi: 10.1016/j.agrformet.2017.09.008
[23] Hu X Y, Huang Y, Sun W J, Yu L F. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric For Meteorol, 2017, 247: 34-41.
doi: 10.1016/j.agrformet.2017.07.014
[24] Bai H Z, Xiao D P, Zhang H, Tao F L, Hu Y H.Impact of warming climate, sowing date, and cultivar shift on rice phenology across China during 1981-2010. Int J Biometeorol, 2019, 63: 1077-1089.
doi: 10.1007/s00484-019-01723-z pmid: 31041532
[25] Chen J, Liu Y J, Zhou W M, Zhang J, Pan T. Effects of climate change and crop management on changes in rice phenology in China from 1981 to 2010. J Sci Food Agric, 2021, 101: 6311-6319.
doi: 10.1002/jsfa.v101.15
[26] Zhang T Y, Huang Y, Yang X G. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob Change Biol, 2013, 19: 563-570.
doi: 10.1111/gcb.2012.19.issue-2
[27] Liu Y J, Dai L. Modelling the impacts of climate change and crop management measures on soybean phenology in China. J Clean Prod, 2020, 262: 121271.
doi: 10.1016/j.jclepro.2020.121271
[28] Wu D R, Wang P J, Jiang C Y, Yang J Y, Huo Z G, Yu Q. Measured phenology response of unchanged crop varieties to long- term historical climate change. Int J Plant Prod, 2018, 13: 47-58.
doi: 10.1007/s42106-018-0033-z
[29] Shi P, Tang L, Wang L, Sun T, Liu L, Cao W, Zhu Y. Post-heading heat stress in rice of south China during 1981-2010. PLoS One, 2015, 10: e0130642.
[30] Rehmani M I A, Ding C Q, Li G H, Ata-Ul-Karim S T, Hadifa A, Bashir M A, Hashem M, Alamri S, Al-Zubair F, Ding Y F. Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River valley, China. J King Saud Univ Sci, 2021, 33: 101599.
doi: 10.1016/j.jksus.2021.101599
[31] 刘书通. 长江中下游地区水稻生产能力分析. 中国农业科学院硕士学位论文, 北京, 2014.
Liu S T. Analysis of Rice Production Capacity in the Middle and Lower Reaches of the Yangtze River. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese with English abstract)
[32] Tao F L, Zhang Z, Shi W J, Liu Y J, Xiao D P, Zhang S, Zhu Z, Wang M, Liu F S. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Glob Change Biol, 2013, 19: 3200-3209.
doi: 10.1111/gcb.2013.19.issue-10
[33] Jiang Y L, Yin X G, Wang X H, Zhang L, Lu Z, Lei Y D, Chu Q Q, Chen F. Impacts of global warming on the cropping systems of China under technical improvements from 1961 to 2016. Agron J, 2021, 113: 187-199.
doi: 10.1002/agj2.v113.1
[34] 陈风波, 马志雄, 陈培勇. 农户水稻种植模式选择现状及其影响因素分析: 对长江中下游地区四个省的调查. 农业经济与管理, 2011, (3): 62-73.
Chen F B, Ma Z X, Chen P Y. Selecting status of farmers’ rice cropping patterns and its impact factor analysis: four provinces survey along the Yangtze River. Agric Econ Manag, 2011, (3): 62-73. (in Chinese with English abstract)
[35] 王旭, 张天山, 刘懂伟, 王晓亮, 李辉. 长江中下游水稻种植影响因素及变化分析. 现代农业科技, 2016, (6): 54-55.
Wang X, Zhang T S, Liu D W, Wang X L, Li H. Analysis of factors influencing rice cultivation and changes in the middle and lower reaches of the Yangtze River. Modern Agric Sci Technol, 2016, (6): 54-55. (in Chinese with English abstract)
[36] Lobell D B, Burke M B. On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol, 2010, 150: 1443-1452.
doi: 10.1016/j.agrformet.2010.07.008
[37] Zhang S, Tao F L, Zhang Z. Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009. Field Crops Res, 2016, 189: 43-50.
doi: 10.1016/j.fcr.2016.02.008
[38] Liu Y J, Zhou W M, Ge Q S. Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010. Clim Change, 2019, 157: 261-277.
doi: 10.1007/s10584-019-02548-w
[39] Zhang Y, Zhao Y X, Sun Q. Increasing maize yields in Northeast China are more closely associated with changes in crop timing than with climate warming. Environ Res Lett, 2021, 16: 054052.
doi: 10.1088/1748-9326/abe490
[40] Zhu P, Jin Z N, Zhuang Q L, Ciais P, Bernacchi C, Wang X H, Makowski D, Lobell D. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob Change Biol, 2018, 24: 4718-4730.
[41] Guo E L, Zhang J Q, Wang Y F, Alu S, Wang R, Li D J, Ha S. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the midwest of Jilin province, China. Theor Appl Climatol, 2017, 132: 685-699.
doi: 10.1007/s00704-017-2097-6
[42] Tao F L, Zhang S L, Zhang Z, Rötter R P. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob Change Biol, 2014, 20: 3686-3699.
doi: 10.1111/gcb.12684
[43] Sun X S, Long Z W, Song G P, Chen C Q. High-temperature episodes with spatial-temporal variation impacted middle-season rice yield in China. Agron J, 2018, 110: 961-969.
doi: 10.2134/agronj2017.09.0510
[44] Zhang L, Yang B Y, Li S, Hou Y Y, Huang D P. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario. Agric For Meteorol, 2018, 248: 185-196.
doi: 10.1016/j.agrformet.2017.09.020
[45] Meng L, Wang C Y, Zhang J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. J Meteorol Res, 2016, 30: 426-443.
doi: 10.1007/s13351-016-5186-z
[46] Wang Y L, Wang L, Zhou J X, Hu S B, Chen H Z, Xiang J, Zhang Y K, Zeng Y J, Shi Q H, Zhu D F, Zhang Y P. Research progress on heat stress of rice at flowering stage. Rice Sci, 2019, 26: 1-10.
doi: 10.1016/j.rsci.2018.06.009
[47] 张倩, 赵艳霞, 王春乙. 长江中下游地区高温热害对水稻的影响. 灾害学, 2011, 26(4): 58-62.
Zhang Q, Zhao Y X, Wang C Y. Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River. J Catastrophol, 2011, 26(4): 58-62.. (in Chinese with English abstract)
[48] Sanchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: a review. Glob Change Biol, 2014, 20: 408-417.
doi: 10.1111/gcb.2014.20.issue-2
[49] Wu C, Cui K H, Li Q, Li L Y, Wang W C, Hu Q Q, Ding Y F, Li G H, Fahad S, Huang J L, Nie L X, Peng S B. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Sci Rep, 2021, 11: 13604.
doi: 10.1038/s41598-021-93079-x pmid: 34193936
[50] 邓南燕. 中国水稻产量差评估及长江中下游地区增产途径探究. 华中农业大学博士学位论文, 湖北武汉, 2018.
Deng N Y. Estimation of Rice Yield Gaps in China and Exploration of Approaches to Improve Yield in Middle and Lower Reaches of Yangtze River Valley . PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[51] 王文婷. 沿江地区温度要素对优质粳稻产量与品质的影响研究. 扬州大学博士学位论文, 江苏扬州, 2021.
Wang W T. Study on the Effect of Temperature-Light Factors on the Formation of Quality and Yield of Japonica Rice along the Yangtze River. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[52] Xu C C, Wu W X, Ge Q S, Zhou Y, Lin Y M, Li Y M. Simulating climate change impacts and potential adaptations on rice yields in the Sichuan Basin, China. Mitig Adapt Strateg Glob Change, 2015, 22: 565-594.
doi: 10.1007/s11027-015-9688-2
[53] Muleke A, Harrison M, de Voil P, Hunt L, Liu K, Yanotti M, Eisner R. Earlier crop flowering caused by global warming alleviated by irrigation. Environ Res Lett, 2022, 17: 044032.
doi: 10.1088/1748-9326/ac5a66
[54] Liu Q H, Wu X, Ma J Q, Li T, Zhou X B, Guo T. Effects of high air temperature on rice grain quality and yeld under field condition. Agron J, 2013, 105: 446.
doi: 10.2134/agronj2012.0164
[55] Tang S, Zhang H X, Li L L, Liu X, Chen L, Chen W Z, Ding Y F. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Funct Plant Biol, 2018, 45: 911-921.
doi: 10.1071/FP17149 pmid: 32291055
[1] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[2] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[3] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830.
[4] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[5] 王萌萌,杨沈斌,江晓东,王应平,陈德,黄维,于庚康,石春林. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 2016, 42(01): 82-92.
[6] 艾治勇,郭夏宇,刘文祥,马国辉,青先国. 长江中游地区双季稻安全生产日期的变化[J]. 作物学报, 2014, 40(07): 1320-1329.
[7] 江敏,金之庆,石春林,林文雄. 福建省基于自适应调整的水稻生产对未来气候变化的响应[J]. 作物学报, 2012, 38(12): 2246-2257.
[8] 李克南,杨晓光,刘园,荀欣,刘志娟,王静,吕硕,王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素[J]. 作物学报, 2012, 38(08): 1483-1493.
[9] 杨沈斌,申双和,赵小艳,赵艳霞,许吟隆,王主玉,刘娟,张玮玮. 气候变化对长江中下游稻区水稻产量的影响[J]. 作物学报, 2010, 36(09): 1519-1528.
[10] 朱大威;金之庆. 气候及其变率变化对东北地区粮食生产的影响[J]. 作物学报, 2008, 34(09): 1588-1597.
[11] 居辉;熊伟;许吟隆;林而达. 气候变化对我国小麦产量的影响[J]. 作物学报, 2005, 31(10): 1340-1343.
[12] 金之庆, 葛道阔, 石春林, 高亮之. 东北平原适应全球气候变化的若干粮食生产对策的模拟研究[J]. 作物学报, 2002, 28(01): 24-31.
[13] 金之庆;方娟;葛道阔;郑喜莲;陈华. 全球气候变化影响我国冬小麦生产之前瞻[J]. 作物学报, 1994, 20(02): 186-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .