作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1305-1315.doi: 10.3724/SP.J.1006.2023.22026
刘二华1,2,3(), 周广胜1,2,3,4,*(), 武炳义2, 宋艳玲1,3, 何奇瑾4, 吕晓敏1,3, 周梦子1,3
LIU Er-Hua1,2,3(), ZHOU Guang-Sheng1,2,3,4,*(), WU Bing-Yi2, SONG Yan-Ling1,3, HE Qi-Jin4, LYU Xiao-Min1,3, ZHOU Meng-Zi1,3
摘要:
作物生殖生长期长度与作物产量和品质密切相关。为深入探究作物生殖生长期长度(reproductive growth period lengths, RGLs)对气候变化和技术进步的响应, 基于1981—2010年长江中下游地区单季稻生殖生长期和气象数据, 量化不同RGLs (孕穗期—抽穗期(booting to heading, BDHD)、抽穗期—乳熟期(heading to milking, HDMS)、乳熟期—成熟期(milking to maturity, MSMD)和孕穗期—成熟期(booting to maturity, BDMD))对平均温度(mean temperature, TEM)、累积降水量(cumulative precipitation, PRE)和累积日照时数(cumulative sunshine duration, SSD)的敏感性, 并分离气候变化和技术进步对不同RGLs的影响。结果表明, 1981—2010年长江中下游地区单季稻BDMD呈延长趋势(0.24 d a-1), 其中, HDMS延长趋势最明显(0.16 d a-1)。气候因子中高温和寡照不利于单季稻不同RGLs延长, 其中, TEM对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为-50.0%、-50.7%和-21.9%, SSD对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为-47.2%、-48.7%和-67.6%。技术进步弥补了气候变化对不同RGLs变化趋势的不利影响。研究表明, 技术进步可能是当前单季稻稳产高产和趋利避害的主要手段, 未来可以采用较长生殖生长期和耐热性品种来适应持续的气候变化。
[1] |
Liu Y J, Bachofen C, Wittwer R, Silva D G, Sun Q, Klaus V H, Buchmann N. Using PhenoCams to track crop phenology and explain the effects of different cropping systems on yield. Agric Syst, 2022, 195: 103306.
doi: 10.1016/j.agsy.2021.103306 |
[2] | van Vliet A J H, Bron W A, Mulder S, van der Slikke W, Odé B. Observed climate-induced changes in plant phenology in the Netherlands. Reg Environ Change, 2013, 14: 997-1008. |
[3] |
Liu F S, Chen Y, Shi W J, Zhang S, Tao F L, Ge Q S. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J Geogr Sci, 2017, 27: 1085-1099.
doi: 10.1007/s11442-017-1423-3 |
[4] |
Mohapatra S, Tripathy S K, Mohanty A K, Tripathy S. Effect of heat stress on yield and economics of rice (Oryza sativa L.) cultivars under different sowing dates. J Agrometeorol, 2021, 23: 38-45.
doi: 10.54386/jam.v23i1 |
[5] |
Wang Z B, Chen J, Tong W J, Xu C C, Fu C. Impacts of climate change and varietal replacement on winter wheat phenology in the North China Plain. Int J Plant Prod, 2018, 12: 251-263.
doi: 10.1007/s42106-018-0024-0 |
[6] |
Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, Liu H Y, Ma Y C, Ding Y H, Friedlingstein P, Liu C Z, Tan K, Yu Y Q, Zhang T Y, Fang J Y. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43-51.
doi: 10.1038/nature09364 |
[7] |
Liu Y J, Qin Y, Ge Q S, Dai J H, Chen Q M. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan province, China. J Geogr Sci, 2017, 27: 1072-1084.
doi: 10.1007/s11442-017-1422-4 |
[8] |
He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015, 200: 135-143.
doi: 10.1016/j.agrformet.2014.09.011 |
[9] | Wang Z, Chen J, Li Y, Li C, Zhang L, Chen F. Effects of climate change and cultivar on summer maize phenology. Int J Plant Prod, 2016, 10: 509-526. |
[10] |
Li N, Li Y, Biswas A, Wang J H, Dong H Z, Chen J H, Liu C C, Fan X Y. Impact of climate change and crop management on cotton phenology based on statistical analysis in the main-cotton- planting areas of China. J Clean Prod, 2021, 298: 126750.
doi: 10.1016/j.jclepro.2021.126750 |
[11] |
Bai H Z, Xiao D P. Spatiotemporal changes of rice phenology in China during 1981-2010. Theor Appl Climatol, 2020, 140: 1483-1494.
doi: 10.1007/s00704-020-03182-8 |
[12] | Wang X H, Ciais P, Li L, Ruget F, Vuichard N, Viovy N, Zhou F, Chang J F, Wu X C, Zhao H F. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991-2012. Agric For Meteorol, 2017, 233: 1-11. |
[13] |
Ye T, Zong S, Kleidon A, Yuan W P, Wang Y, Shi P J. Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects. Clim Change, 2019, 155: 127-143.
doi: 10.1007/s10584-019-02450-5 |
[14] |
Zhang S, Tao F L, Zhang Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981-2009. Eur J Agron, 2014, 54: 70-83.
doi: 10.1016/j.eja.2013.12.001 |
[15] |
Li Z G, Yang P, Tang H J, Wu W B, Yin H, Liu Z H, Zhang L. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg Environ Change, 2013, 14: 39-48.
doi: 10.1007/s10113-013-0503-x |
[16] |
Mo F, Sun M, Liu X Y, Wang J Y, Zhang X C, Ma B L, Xiong Y C. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Res, 2016, 196: 337-347.
doi: 10.1016/j.fcr.2016.06.024 |
[17] |
Wang H L, Gan Y T, Wang R Y, Niu J Y, Zhao H, Yang Q G, Li G C. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric For Meteorol, 2008, 148: 1242-1251.
doi: 10.1016/j.agrformet.2008.03.003 |
[18] |
Wang Z B, Chen J, Xing F F, Han Y C, Chen F, Zhang L F, Li Y B, Li C D. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci Rep, 2017, 7: 6628.
doi: 10.1038/s41598-017-07056-4 pmid: 28747769 |
[19] |
Xiao D P, Zhao Y X, Bai H Z, Hu Y K, Cao J S. Impacts of climate warming and crop management on maize phenology in northern China. J Arid Land, 2019, 11: 892-903.
doi: 10.1007/s40333-019-0028-3 |
[20] |
Fatima Z, Ur-Rehman A, Abbas G, Iqbal P, Zakir I, Khan M A, Kamal G M, Ahmed M, Ahmad S. Quantification of climate warming and crop management impacts on phenology of pulses- based cropping systems. Int J Plant Prod, 2020, 15: 107-123.
doi: 10.1007/s42106-020-00112-6 |
[21] |
Li K N, Yang X G, Tian H Q, Pan S F, Liu Z J, Lu S. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int J Biometeorol, 2016, 60: 21-32.
doi: 10.1007/s00484-015-1002-1 pmid: 25962358 |
[22] |
Liu Y J, Chen Q M, Ge Q S, Ge Q S, Dai J H, Qin Y, Dai L, Zou X T, Chen J. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric For Meteorol, 2018, 248: 518-526.
doi: 10.1016/j.agrformet.2017.09.008 |
[23] |
Hu X Y, Huang Y, Sun W J, Yu L F. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric For Meteorol, 2017, 247: 34-41.
doi: 10.1016/j.agrformet.2017.07.014 |
[24] |
Bai H Z, Xiao D P, Zhang H, Tao F L, Hu Y H.Impact of warming climate, sowing date, and cultivar shift on rice phenology across China during 1981-2010. Int J Biometeorol, 2019, 63: 1077-1089.
doi: 10.1007/s00484-019-01723-z pmid: 31041532 |
[25] |
Chen J, Liu Y J, Zhou W M, Zhang J, Pan T. Effects of climate change and crop management on changes in rice phenology in China from 1981 to 2010. J Sci Food Agric, 2021, 101: 6311-6319.
doi: 10.1002/jsfa.v101.15 |
[26] |
Zhang T Y, Huang Y, Yang X G. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob Change Biol, 2013, 19: 563-570.
doi: 10.1111/gcb.2012.19.issue-2 |
[27] |
Liu Y J, Dai L. Modelling the impacts of climate change and crop management measures on soybean phenology in China. J Clean Prod, 2020, 262: 121271.
doi: 10.1016/j.jclepro.2020.121271 |
[28] |
Wu D R, Wang P J, Jiang C Y, Yang J Y, Huo Z G, Yu Q. Measured phenology response of unchanged crop varieties to long- term historical climate change. Int J Plant Prod, 2018, 13: 47-58.
doi: 10.1007/s42106-018-0033-z |
[29] | Shi P, Tang L, Wang L, Sun T, Liu L, Cao W, Zhu Y. Post-heading heat stress in rice of south China during 1981-2010. PLoS One, 2015, 10: e0130642. |
[30] |
Rehmani M I A, Ding C Q, Li G H, Ata-Ul-Karim S T, Hadifa A, Bashir M A, Hashem M, Alamri S, Al-Zubair F, Ding Y F. Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River valley, China. J King Saud Univ Sci, 2021, 33: 101599.
doi: 10.1016/j.jksus.2021.101599 |
[31] | 刘书通. 长江中下游地区水稻生产能力分析. 中国农业科学院硕士学位论文, 北京, 2014. |
Liu S T. Analysis of Rice Production Capacity in the Middle and Lower Reaches of the Yangtze River. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese with English abstract) | |
[32] |
Tao F L, Zhang Z, Shi W J, Liu Y J, Xiao D P, Zhang S, Zhu Z, Wang M, Liu F S. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Glob Change Biol, 2013, 19: 3200-3209.
doi: 10.1111/gcb.2013.19.issue-10 |
[33] |
Jiang Y L, Yin X G, Wang X H, Zhang L, Lu Z, Lei Y D, Chu Q Q, Chen F. Impacts of global warming on the cropping systems of China under technical improvements from 1961 to 2016. Agron J, 2021, 113: 187-199.
doi: 10.1002/agj2.v113.1 |
[34] | 陈风波, 马志雄, 陈培勇. 农户水稻种植模式选择现状及其影响因素分析: 对长江中下游地区四个省的调查. 农业经济与管理, 2011, (3): 62-73. |
Chen F B, Ma Z X, Chen P Y. Selecting status of farmers’ rice cropping patterns and its impact factor analysis: four provinces survey along the Yangtze River. Agric Econ Manag, 2011, (3): 62-73. (in Chinese with English abstract) | |
[35] | 王旭, 张天山, 刘懂伟, 王晓亮, 李辉. 长江中下游水稻种植影响因素及变化分析. 现代农业科技, 2016, (6): 54-55. |
Wang X, Zhang T S, Liu D W, Wang X L, Li H. Analysis of factors influencing rice cultivation and changes in the middle and lower reaches of the Yangtze River. Modern Agric Sci Technol, 2016, (6): 54-55. (in Chinese with English abstract) | |
[36] |
Lobell D B, Burke M B. On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol, 2010, 150: 1443-1452.
doi: 10.1016/j.agrformet.2010.07.008 |
[37] |
Zhang S, Tao F L, Zhang Z. Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009. Field Crops Res, 2016, 189: 43-50.
doi: 10.1016/j.fcr.2016.02.008 |
[38] |
Liu Y J, Zhou W M, Ge Q S. Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010. Clim Change, 2019, 157: 261-277.
doi: 10.1007/s10584-019-02548-w |
[39] |
Zhang Y, Zhao Y X, Sun Q. Increasing maize yields in Northeast China are more closely associated with changes in crop timing than with climate warming. Environ Res Lett, 2021, 16: 054052.
doi: 10.1088/1748-9326/abe490 |
[40] | Zhu P, Jin Z N, Zhuang Q L, Ciais P, Bernacchi C, Wang X H, Makowski D, Lobell D. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob Change Biol, 2018, 24: 4718-4730. |
[41] |
Guo E L, Zhang J Q, Wang Y F, Alu S, Wang R, Li D J, Ha S. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the midwest of Jilin province, China. Theor Appl Climatol, 2017, 132: 685-699.
doi: 10.1007/s00704-017-2097-6 |
[42] |
Tao F L, Zhang S L, Zhang Z, Rötter R P. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob Change Biol, 2014, 20: 3686-3699.
doi: 10.1111/gcb.12684 |
[43] |
Sun X S, Long Z W, Song G P, Chen C Q. High-temperature episodes with spatial-temporal variation impacted middle-season rice yield in China. Agron J, 2018, 110: 961-969.
doi: 10.2134/agronj2017.09.0510 |
[44] |
Zhang L, Yang B Y, Li S, Hou Y Y, Huang D P. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario. Agric For Meteorol, 2018, 248: 185-196.
doi: 10.1016/j.agrformet.2017.09.020 |
[45] |
Meng L, Wang C Y, Zhang J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. J Meteorol Res, 2016, 30: 426-443.
doi: 10.1007/s13351-016-5186-z |
[46] |
Wang Y L, Wang L, Zhou J X, Hu S B, Chen H Z, Xiang J, Zhang Y K, Zeng Y J, Shi Q H, Zhu D F, Zhang Y P. Research progress on heat stress of rice at flowering stage. Rice Sci, 2019, 26: 1-10.
doi: 10.1016/j.rsci.2018.06.009 |
[47] | 张倩, 赵艳霞, 王春乙. 长江中下游地区高温热害对水稻的影响. 灾害学, 2011, 26(4): 58-62. |
Zhang Q, Zhao Y X, Wang C Y. Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River. J Catastrophol, 2011, 26(4): 58-62.. (in Chinese with English abstract) | |
[48] |
Sanchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: a review. Glob Change Biol, 2014, 20: 408-417.
doi: 10.1111/gcb.2014.20.issue-2 |
[49] |
Wu C, Cui K H, Li Q, Li L Y, Wang W C, Hu Q Q, Ding Y F, Li G H, Fahad S, Huang J L, Nie L X, Peng S B. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Sci Rep, 2021, 11: 13604.
doi: 10.1038/s41598-021-93079-x pmid: 34193936 |
[50] | 邓南燕. 中国水稻产量差评估及长江中下游地区增产途径探究. 华中农业大学博士学位论文, 湖北武汉, 2018. |
Deng N Y. Estimation of Rice Yield Gaps in China and Exploration of Approaches to Improve Yield in Middle and Lower Reaches of Yangtze River Valley . PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract) | |
[51] | 王文婷. 沿江地区温度要素对优质粳稻产量与品质的影响研究. 扬州大学博士学位论文, 江苏扬州, 2021. |
Wang W T. Study on the Effect of Temperature-Light Factors on the Formation of Quality and Yield of Japonica Rice along the Yangtze River. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract). | |
[52] |
Xu C C, Wu W X, Ge Q S, Zhou Y, Lin Y M, Li Y M. Simulating climate change impacts and potential adaptations on rice yields in the Sichuan Basin, China. Mitig Adapt Strateg Glob Change, 2015, 22: 565-594.
doi: 10.1007/s11027-015-9688-2 |
[53] |
Muleke A, Harrison M, de Voil P, Hunt L, Liu K, Yanotti M, Eisner R. Earlier crop flowering caused by global warming alleviated by irrigation. Environ Res Lett, 2022, 17: 044032.
doi: 10.1088/1748-9326/ac5a66 |
[54] |
Liu Q H, Wu X, Ma J Q, Li T, Zhou X B, Guo T. Effects of high air temperature on rice grain quality and yeld under field condition. Agron J, 2013, 105: 446.
doi: 10.2134/agronj2012.0164 |
[55] |
Tang S, Zhang H X, Li L L, Liu X, Chen L, Chen W Z, Ding Y F. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Funct Plant Biol, 2018, 45: 911-921.
doi: 10.1071/FP17149 pmid: 32291055 |
[1] | 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
[2] | 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231. |
[3] | 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. |
[4] | 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415. |
[5] | 王萌萌,杨沈斌,江晓东,王应平,陈德,黄维,于庚康,石春林. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 2016, 42(01): 82-92. |
[6] | 艾治勇,郭夏宇,刘文祥,马国辉,青先国. 长江中游地区双季稻安全生产日期的变化[J]. 作物学报, 2014, 40(07): 1320-1329. |
[7] | 江敏,金之庆,石春林,林文雄. 福建省基于自适应调整的水稻生产对未来气候变化的响应[J]. 作物学报, 2012, 38(12): 2246-2257. |
[8] | 李克南,杨晓光,刘园,荀欣,刘志娟,王静,吕硕,王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素[J]. 作物学报, 2012, 38(08): 1483-1493. |
[9] | 杨沈斌,申双和,赵小艳,赵艳霞,许吟隆,王主玉,刘娟,张玮玮. 气候变化对长江中下游稻区水稻产量的影响[J]. 作物学报, 2010, 36(09): 1519-1528. |
[10] | 朱大威;金之庆. 气候及其变率变化对东北地区粮食生产的影响[J]. 作物学报, 2008, 34(09): 1588-1597. |
[11] | 居辉;熊伟;许吟隆;林而达. 气候变化对我国小麦产量的影响[J]. 作物学报, 2005, 31(10): 1340-1343. |
[12] | 金之庆, 葛道阔, 石春林, 高亮之. 东北平原适应全球气候变化的若干粮食生产对策的模拟研究[J]. 作物学报, 2002, 28(01): 24-31. |
[13] | 金之庆;方娟;葛道阔;郑喜莲;陈华. 全球气候变化影响我国冬小麦生产之前瞻[J]. 作物学报, 1994, 20(02): 186-197. |
|