欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1292-1304.doi: 10.3724/SP.J.1006.2023.23046

• 耕作栽培·生理生化 • 上一篇    下一篇

基于夏玉米产量和氮素利用的水氮减量方案优选

李慧1,2(), 王旭敏1,2, 刘苗1,2, 刘朋召1,2, 李巧丽1,2, 王小利1,2, 王瑞1,2, 李军1,2,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2农业农村部西北黄土高原作物生理生态与耕作重点实验室, 陕西杨凌 712100
  • 收稿日期:2022-06-01 接受日期:2022-09-05 出版日期:2023-05-12 网络出版日期:2022-09-17
  • 通讯作者: *李军, E-mail: junli@nwsuaf.edu.cn
  • 作者简介:E-mail: 17852021052@163.com
  • 基金资助:
    国家科技支撑计划项目(2015BAD22B02);国家自然科学基金项目(31801300)

Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize

LI Hui1,2(), WANG Xu-Min1,2, LIU Miao1,2, LIU Peng-Zhao1,2, LI Qiao-Li1,2, WANG Xiao-Li1,2, WANG Rui1,2, LI Jun1,2,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Key Laboratory of Crop Physio-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2022-06-01 Accepted:2022-09-05 Published:2023-05-12 Published online:2022-09-17
  • Contact: *E-mail: junli@nwsuaf.edu.cn
  • Supported by:
    National Science and Technology Support Program of China(2015BAD22B02);National Natural Science Foundation of China(31801300)

摘要:

针对当前夏玉米生产中水氮投入不合理, 缺少综合夏玉米产量、氮素利用及土壤硝态氮含量对水氮优化管理模式评价的问题, 运用层次分析法、熵权法、博弈论组合赋权计算各指标权重, 使用TOPSIS法建立模型对水氮减量方案进行综合评价, 为关中平原夏玉米节水节肥环保增效的生产模式提供理论依据。于2018—2020年在陕西杨凌开展水、氮二因素裂区田间试验。设置3个灌溉处理, 以传统灌水量(800 m3 hm-2, W2)为对照、在此基础上减50% (400 m3 hm-2, W1)和减100% (0 m3 hm-2, W0)。每个灌溉量下设5个施氮梯度, 以传统施氮量(300 kg hm-2, N300)为对照、在此基础上减25% (225 kg hm-2, N225)、减50% (150 kg hm-2, N150)、减75% (75 kg hm-2, N75)和减100% (0)。分析不同水氮减量处理夏玉米产量、氮素利用及土壤硝态氮含量, 使用TOPSIS法建模选优。与对照W2N300相比, W1N225增产效果最明显, 增产率为5.4%, W2N225、W2N150、W1N150也表现出明显的增产效应, 增产率分别为2.4%、0.7%、0.3%。W1N225、W1N150可以显著提高氮肥农学效率、氮肥回收效率、氮肥偏生产力, 2018年NAE、NRE、NPFP分别比传统模式提高29.7%、16.2%、24.5%, 36.5%、25.4%、28.8%; 2019年分别提高53.4%、36.7%、32.8%, 46.5%、35.2%、47.4%; 2020年分别提高43.6%、37.3%、48.0%, 66.9%、43.1%、54.5%。W1N225、W1N150土壤硝态氮残留量比传统水氮管理模式减少28.6%、53.8%。使用TOPSIS法进行综合评价, 发现氮肥减量25%~50%、灌水减少50%时各指标评价值最高, 水氮减量(中水中肥)优于高水高肥, 高水高肥优于低水低肥, 高水低肥优于低水高肥。通过TOPSIS法模拟寻优得出灌水量为W1 (400 m3 hm-2)施氮量为200 kg hm-2时综合评价值最优。因此, 在关中平原灌溉区, 灌水减量50% (400 m3 hm-2)、施氮减少33.3% (200 kg hm-2)可以实现关中平原夏玉米生产节水减肥环保增效的目标。

关键词: 夏玉米, 水氮减量, 氮素利用, 产量, TOPSIS法

Abstract:

The objective of this study is to solve the problems of excessive water and nitrogen input in current summer maize cropping system and lacking comprehensive evaluation approach and evaluate the current water and nitrogen management scheme for yield, nitrogen utilization of summer maize and soil nitrate nitrogen content. AHP, entropy method, and game theory were combined to determine index weight, TOPSIS was used to evaluate water and nitrogen reduction scheme, thus the results can provide a theoretical basis for water-saving, nitrogen-reducing and high efficient cultivation scheme of summer maize in Guanzhong plain. The two-factor split-plot field experiment during 2018-2020 was conducted in Yangling, Shaanxi province, where three irrigation levels were traditional 800 m3 hm-2 (W2) as the control, reduced to 400 m3 hm-2 (W1), and no irrigation (W0). Each water treatment was the five N rate treatments [300 kg hm-2 (N300) as the control, reduced 25% (225 kg hm-2), reduced 50% (150 kg hm-2), reduced 75% (75 kg hm-2), and no N fertilizer (0)]. Maize yield, nitrogen use efficiency, and soil nitrate nitrogen content under different water and nitrogen reduction treatments were analyzed and to choose optimal scheme with modeling by TOPSIS. Compared with W2N300 (CK), W1N225 had best effect on yield, and increased significantly by 5.4%. Meanwhile, W2N225, W2N150, and W1N150 had significantly effect on yield, and increased significantly by 2.4%, 0.7%, and 0.3%, respectively. W1N225 and W1N150 enhanced the N-use efficiency, agronomic efficiency, and partial factor productivity, and increased significantly by 29.7%, 16.2%, 24.5%; 36.5%, 25.4%, 28.8%; 53.4%, 36.7%, 32.8%; 46.5%, 35.2%, 47.4%; 43.6%, 37.3%, 48.0%; and 66.9%, 43.1%, 54.5% than CK in 2018, 2019, 2020, respectively. W1N225, W1N150 reduced soil nitrate nitrogen leaching, and decreased by 28.6% and 53.8% than CK, respectively. Using TOPSIS for comprehensive evaluation, it was found that the evaluation value of each index was the highest when nitrogen fertilizer was reduced by 25%-50% (with nitrogen application rate of 150-225 kg hm-2) and irrigation water was reduced by 50% (irrigated 400 m3 hm-2 in jointing stage). Water and nitrogen reduction (medium fertilizer in middle water) were better than high water and high fertilizer, high water and high fertilizer were better than low water and low fertilizer, and high water and low fertilizer were better than low water and high fertilizer. Through TOPSIS optimization, the comprehensive evaluation value was the best when the irrigation amount was W1 (irrigated 400 m3 hm-2 at jointing stage) and the nitrogen application amount was 200 kg hm-2. Therefore, reduced irrigation (irrigated 400 m3 hm-2 in jointing stage) and reduced 33.3% nitrogen (with nitrogen application rate of 200 kg hm-2) mode can be used to realize the water-saving and nitrogen reduction production of summer maize in Guanzhong Plain.

Key words: summer maize, irrigation and nitrogen fertilizer reduction, nitrogen use efficiency, yield, technique for order preference by similarity to an ideal solution

表1

试验地0~60 cm土层基础理化性状"

土层
Depth
(cm)
有机质
SOM
(g kg-1)
全氮
Total N
(g kg-1)
硝态氮
Nitrate N
(mg kg-1)
全磷
Total P
(g kg-1)
速效磷
Available P
(mg kg-1)
全钾
Total K
(g kg-1)
速效钾
Available K
(mg kg-1)
容重
Soil bulk density (g cm-3)
0-20 19.06 1.24 12.46 0.99 27.59 10.85 243.87 1.20
20-40 15.03 1.00 14.53 0.86 15.06 10.59 222.31 1.38
40-60 10.95 0.79 23.08 0.62 3.54 9.90 193.96 1.49

图1

夏玉米生长季月降雨量"

表2

不同水氮减量处理下夏玉米产量"

处理
Treatment
产量Yield (kg hm-2) 平均
Mean
增产率
Increase rate (%)
2018 2019 2020
W2N300 9802.0 b 9925.9 b 9435.7 c 9722.4 c
W2N225 10,016.0 a 9982.2 b 9867.4 b 9955.2 b 2.4 b
W2N150 9707.4 b 9664.0 c 10,014.0 b 9795.2 bc 0.7 c
W2N75 8612.3 d 9259.0 d 8955.8 e 8942.4 d -8.0 e
W2N0 7322.7 f 6891.2 i 7823.2 h 7345.5 g -24.4 i
W1N300 9619.5 b 10,508.0 a 10,347.7 a 10,158.4 a 4.5 a
W1N225 9729.4 b 10,451.2 a 10,543.9 a 10,244.8 a 5.4 a
W1N150 9358.6 c 9556.1 c 10,377.4 a 9753.0 c 0.3 d
W1N75 8652.3 d 8705.2 e 9254.1 d 8870.5 d -8.8 f
W1N0 7065.4 g 6865.3 i 7927.0 h 7285.9 g -25.1 j
W0N300 8257.1 e 8444.3 g 8761.1 f 8487.5 e -12.7 g
W0N225 8107.3 e 8675.6 ef 8966.3 e 8583.4 e -11.7 g
W0N150 8045.1 e 8481.5 fg 9112.5 de 8546.4 e -12.1 g
W0N75 7422.3 f 7871.1 h 8148.7 g 7814.0 f -19.6 h
W0N0 6160.6 h 5251.9 j 6932.6 i 6114.7 h -37.1 k
方差分析ANOVA
W *** *** ** *** ***
N *** * *** *** ***
W×N ** NS * *** ***

表3

不同水氮减量处理下夏玉米地上部吸氮量和氮素利用效率"

处理
Treatment
2018 2019 2020
N uptake
(kg hm-2)
NAE
(kg kg-1)
NRE
(%)
NPFP
(kg kg-1)
N uptake
(kg hm-2)
NAE
(kg kg-1)
NRE
(%)
NPFP
(kg kg-1)
N uptake
(kg hm-2)
NAE
(kg kg-1)
NRE
(%)
NPFP
(kg kg-1)
W2N300 227.5 a 8.3 e 30.6 f 32.7 g 213.7 a 10.1 f 24.9 f 33.1 h 191.6 a 5.4 f 24.8 f 31.5 hi
W2N225 221.8 a 12.0 d 38.2 de 44.5 e 213.0 a 13.7 de 32.9 e 44.4 f 193.0 a 9.1 d 33.7 e 43.9 g
W2N150 201.9 b 15.9 b 44.0 c 64.7 c 213.2 a 18.5 bc 49.5 b 64.4 d 172.2 b 14.6 b 36.7 de 66.8 d
W2N75 169.3 e 17.2 b 44.6 c 114.8 a 168.7 e 18.2 bc 45.0 c 123.5 a 155.2 c 15.1 b 50.9 b 119.4 b
W2N0 135.8 i 139.0 i 117.0 f
W1N300 202.9 b 8.5 e 28.6 f 32.1 g 190.6 b 12.1 ef 24.3 f 35.0 h 191.6 a 8.1 de 26.3 f 34.5 h
W1N225 199.3 b 11.8 d 36.5 e 43.3 e 192.7 b 15.9 cd 33.4 e 46.5 f 196.6 a 11.6 c 39.2 d 46.9 f
W1N150 188.1 c 15.5 bc 47.2 c 62.2 c 177.2 c 17.9 bc 39.7 d 63.7 d 173.9 b 16.3 ab 43.6 c 69.2 d
W1N75 183.8 d 21.2 a 88.8 a 115.4 a 154.4 h 24.5 a 49.0 b 116.1 b 150.4 cd 17.7 a 56.0 a 123.4 a
W1N0 117.2 j 117.7 j 108.4 fg
W0N300 158.8 g 7.0 e 19.0 g 27.5 h 177.1 c 9.6 f 24.2 f 28.2 i 143.7 d 6.1 ef 13.8 g 29.2 i
W0N225 182.6 d 8.7 e 35.9 e 36.0 f 172.5 d 13.9 de 30.2 e 38.6 g 154.9 c 9.0 d 23.3 f 39.9 g
W0N150 162.0 f 12.6 cd 40.1 d 53.6 d 164.5 f 19.5 b 40.0 d 56.5 e 141.5 d 14.5 b 26.1 f 60.8 e
W0N75 150.6 h 16.8 b 65.0 b 99.0 b 160.3 g 22.9 a 74.4 a 105.0 c 129.7 e 16.2 ab 36.4 de 108.6 c
W0N0 101.8 k 104.5 k 102.4 g
W *** ** *** *** *** * *** *** *** ** *** **
N *** *** *** *** *** *** *** *** *** *** *** ***
W×N ** NS *** *** *** NS *** *** *** NS NS NS

图2

2018-2020年玉米收获后0~200 cm、0~300 cm土层土壤硝态氮含量剖面图 N300: 施氮量为300 kg hm-2; N225: 施氮量为225 kg hm-2; N150: 施氮量为150 kg hm-2; N75: 施氮量为75 kg hm-2; N0: 施氮量为0 kg hm-2; W2: 拔节期和抽雄期共灌水800 m3 hm-2; W1: 拔节期灌水 400 m3 hm-2; W0: 不灌水, *表示在0.05概率水平差异显著, **表示在0.01概率水平差异显著, ***表示在0.001概率水平差异显著。"

图3

不同水氮减量处理下玉米田0~200 cm土层硝态残留量 N300: 施氮量为300 kg hm-2; N225: 施氮量为225 kg hm-2; N150: 施氮量为 150 kg hm-2; N75: 施氮量为75 kg hm-2; N0: 施氮量为0 kg hm-2; W2: 拔节期和抽雄期共灌水800 m3 hm-2; W1: 拔节期灌水400 m3 hm-2; W0: 不灌水。同列数据后不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。"

图4

不同水氮减量处理下玉米田0~300 cm土层硝态残留量 N300: 施氮量为 300 kg hm-2; N225: 施氮量为 225 kg hm-2; N150: 施氮量为 150 kg hm-2; N75: 施氮量为 75 kg hm-2; N0: 施氮量为 0 kg hm-2; W2: 拔节期和抽雄期共灌水 800 m3 hm-2; W1: 拔节期灌水 400 m3 hm-2; W0: 不灌水。同列数据后不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。"

表4

夏玉米产量、氮肥利用率和0~200 cm土层硝态氮残留量与施氮量的回归分析模型"

灌水
Irrigation
项目
Item
回归方程
Regression equation
决定系数
Coefficient of determination
W2 Y y = 7351.3+21.5x-0.045x2 0.928***
NR y = 97.5+1.7x+0.0039x2 0.874***
NAE y = 21.0-0.042x 0.736***
NRE y = 55.2-0.092x 0.790***
NPFP y = 135.7-0.38x 0.880***
W1 Y y = 7579.7+24.1x-0.055x2 0.823***
NR y = 135.5+1.5x+0.0036x2 0.887***
NAE y = 24.6-0.051x 0.800***
NRE y = 73.2-0.16x 0.638**
NPFP y = 133.9-0.36x 0.871***
W0 Y y = 6194.0+23.7x-0.054x2 0.783***
NR y = 70.6+1.5x+0.0038x2 0.989***
NAE y = 22.6-0.051x 0.709***
NRE y = 66.8-0.17x 0.617**
NPFP y = 118.5-0.33x 0.873***

图5

贴合度与不同指标的相关性分析 Di: 贴合度; B11: 产量; B21: 吸氮量; B22: 氮肥农学效率; B23: 氮肥回收效率; B24: 氮肥偏生产力; B31: 硝态残留量。*表示在0.05概率水平差异显著, **表示在0.01概率水平差异显著, ***表示在0.001概率水平差异显著。"

表5

基于 TOPSIS 法确定的不同水氮处理的贴近度和综合排序"

处理
Treatment
2018 2019 2020
D+ D- Di 排序
Rank
D+ D- Di 排序
Rank
D+ D- Di 排序
Rank
W2N300 0.217 0.348 0.616 d 7 0.213 0.509 0.705 e 7 0.252 0.259 0.507 f 10
W2N225 0.164 0.374 0.695 bc 4 0.193 0.516 0.728 de 6 0.207 0.308 0.598 d 7
W2N150 0.132 0.343 0.722 b 2 0.125 0.498 0.800 ab 2 0.173 0.374 0.683 c 5
W2N75 0.153 0.317 0.674 c 5 0.143 0.471 0.767 c 4 0.155 0.334 0.683 c 4
W2N0 0.333 0.185 0.357 g 13 0.408 0.252 0.381 i 14 0.344 0.214 0.384 h 12
W1N300 0.228 0.326 0.588 d 8 0.186 0.571 0.754 cd 5 0.135 0.347 0.720 b 3
W1N225 0.111 0.369 0.769 a 1 0.133 0.570 0.811 a 1 0.129 0.346 0.728 b 2
W1N150 0.132 0.335 0.718 b 3 0.138 0.484 0.778 bc 3 0.102 0.387 0.792 a 1
W1N75 0.167 0.345 0.673 c 6 0.202 0.414 0.672 f 8 0.223 0.340 0.604 d 6
W1N0 0.354 0.176 0.332 g 14 0.412 0.254 0.382 i 13 0.339 0.203 0.374 h 13
W0N300 0.253 0.212 0.456 f 12 0.293 0.349 0.544 h 11 0.309 0.184 0.374 h 14
W0N225 0.235 0.221 0.485 ef 11 0.247 0.379 0.605 g 9 0.265 0.216 0.449 g 11
W0N150 0.223 0.231 0.508 e 9 0.243 0.370 0.604 g 10 0.215 0.253 0.541 e 8
W0N75 0.247 0.244 0.497 e 10 0.292 0.331 0.531 h 12 0.242 0.259 0.517 ef 9
W0N0 0.419 0.168 0.286 h 15 0.581 0.188 0.245 j 15 0.411 0.191 0.317 i 15

图6

不同灌水条件下综合评价贴合度与施氮量的关系 W2: 拔节期和抽雄期共灌水 800 m3 hm-2; W1: 拔节期灌水 400 m3 hm-2; W0: 不灌水。"

[1] 尚文彬, 张忠学, 郑恩楠, 刘明. 水氮耦合对膜下滴灌玉米产量和水氮利用的影响. 灌溉排水学报, 2019, 38(1): 49-55.
Shang W B, Zhang Z X, Zheng E N, Liu M. Nitrogen-water coupling affects nitrogen utilization and yield of film-mulched maize under drip irrigation. J Irrig Drain, 2019, 38(1): 49-55. (in Chinese with English abstract)
[2] 蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题. 植物营养与肥料学报, 2014, 20: 1-6.
Cai Z C, Yan X Y, Zhu Z L. Solving the problem of nitrogen pollution under high input conditions. J Plant Nutr Fert, 2014, 20: 1-6. (in Chinese with English abstract)
[3] 王大鹏, 郑亮, 吴小平, 罗雪华, 王文斌, 张永发, 薛欣欣. 旱地土壤硝态氮的产生、淋洗迁移及调控措施. 中国生态农业学报, 2017, 25: 1731-1741.
Wang D P, Zheng L, Wu X P, Luo X H, Wang W B, Zhang Y F, Xue X X. Review of soil nitrate formation, leaching transport and their control measures in upland farming systems. Chin J Eco-Agric, 2017, 25: 1731-1741 (in Chinese with English abstract).
[4] 唐文雪, 马忠明, 王景才. 施氮量对旱地全膜双垄沟播玉米田土壤硝态氮、产量和氮肥利用率的影响. 干旱地区农业研究, 2015, 33(6): 58-63.
Tang W X, Ma Z M, Wang J C. Effects of nitrogen rate on soil nitrate-N, yield and nitrogen use efficiency of double-ridge furrow sowing with full plastic film mulching for maize in dryland. Agric Res Arid Areas, 2015, 33(6): 58-63. (in Chinese with English abstract)
[5] 朱兆良. 农田中氮肥的损失与对策. 土壤与环境, 2000, (1): 1-6.
Zhu Z L. Loss of fertilizer N from plant-soil system and the strategies and techniques for its reduction. Ecol Environ Sci, 2000, (1): 1-6. (in Chinese with English abstract)
[6] 张勇. 从陕西水资源状况看节水灌溉. 干旱地区农业研究, 2002, 20(3): 60-62.
Zhang Y. Water resources and water-saving irrigation in Shaanxi province. Agric Res Arid Areas, 2002, 20(3): 60-62. (in Chinese with English abstract)
[7] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响. 作物学报, 2020, 46: 924-936.
doi: 10.3724/SP.J.1006.2020.91060
Luo W H, Shi Z J, Wang X M, Li J, Wang R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agron Sin, 2020, 46: 924-936. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91060
[8] 屈佳伟, 高聚林, 于晓芳, 王志刚, 胡树平, 孙继颖, 苏治军, 谢岷, 青格尔. 不同氮效率玉米品种对土壤硝态氮时空分布及农田氮素平衡的影响. 作物学报, 2018, 44: 737-749.
doi: 10.3724/SP.J.1006.2018.00737
Qu J W, Gao J L, Yu X F, Wang Z G, Hu S P, Sun J Y, Su Z J, Xie M, Qing G E. Effects of maize varieties with different nitrogen efficiencies on temporal and spatial distribution of soil nitrate and field nitrogen balance. Acta Agron Sin, 2018, 44: 737-749. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00737
[9] 刘慧颖, 牛世伟, 董环. 综合指数法定量评价玉米氮肥施用综合效应. 中国土壤与肥料, 2016, (6): 106-110.
Liu H Y, Niu S W, Dong H. Quantitative assessment on effects of N application on maize with integrated evaluation index. Soil Fert Sci China, 2016, (6): 106-110 (in Chinese with English abstract).
[10] Gu L M, Liu T N, Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain. J Integr Agric, 2015, 14: 374-388.
doi: 10.1016/S2095-3119(14)60747-4
[11] 任中生, 屈忠义, 李哲, 刘安琪. 水氮互作对河套灌区膜下滴灌玉米产量与水氮利用的影响. 水土保持学报, 2016, 30(5): 149-155.
Ren Z S, Qu Z Y, Li Z, Liu A Q. Interactive effects of nitrogen fertilization and irrigation on grain yield, water use efficiency and nitrogen use efficiency of mulched drip-irrigated maize in Hetao Irrigation District, China. J Soil Water Conser, 2016, 30(5): 149-155. (in Chinese with English abstract)
[12] 潘晓莹, 武继承. 水肥耦合效应研究的现状与前景. 河南农业科学, 2011, 40(10): 20-23.
Pan X Y, Wu J C. Current situation and prospects of water and fertilizer coupling effects. J Henan Agric Sci, 2011, 40(10): 20-23. (in Chinese with English abstract)
[13] 刘凡, 刘斌祥, 刘佳媛, 杜霞, 孔凡磊, 袁继超. 水氮互作对川中丘陵区玉米水肥利用效率和产量形成的影响. 干旱地区农业研究, 2021, 39(6): 200-206.
Liu F, Liu B X, Liu J Y, Du X, Kong F L, Yuan J C. Effect of water and nitrogen interaction on maize utilization efficiency of fertilizer, water and yield formation in the Middle Hilly Area of Sichuan province. Agric Res Arid Areas, 2021, 39(6): 200-206. (in Chinese with English abstract)
[14] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.15.004
[15] 尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018, 51: 3941-3950.
doi: 10.3864/j.issn.0578-1752.2018.20.012
Yin C X, Li Q, Kong L L, Qin Y B, Wang N, Yu L, Liu C G, Wang L C, Hou Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Sci Agric Sin, 2018, 51: 3941-3950. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.20.012
[16] 樊军, 郝明德, 党廷辉. 旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响. 土壤与环境, 2000, 9(1): 23-26.
Fan J, Hao M D, Dang T H. Distribution and accumulation of NO3--N in soil profile of long-term located fertilizer experiment. Ecol Environ Sci, 2000, 9(1): 23-26 (in Chinese with English abstract).
[17] 刘朋召, 王旭敏, 宁芳, 雒文鹤, 张琦, 张元红, 李军. 减量施氮对渭北旱地春玉米产量、氮素利用及土壤硝态氮含量的影响. 应用生态学报, 2020, 31: 2621-2629.
doi: 10.13287/j.1001-9332.202008.025
Liu P Z, Wang X M, Ning F, Luo W H, Zhang Q, Zhang Y H, Li J. Effects of reduced nitrogen application on yield, nitrogen utilization of spring maize and soil nitrate content in Weibei dryland northwest China. Chin J Appl Ecol, 2020, 31: 2621-2629. (in Chinese with English abstract)
[18] 吴得峰, 姜继韶, 孙棋棋, 王蕊, 李如剑, 王志齐, 刘洪星, 崔全红, 郭胜利, 党廷辉, 巨晓棠. 减量施氮对雨养区春玉米产量和环境效应的影响. 农业环境科学学报, 2016, 35: 1202-1209.
Wu D F, Jiang J S, Sun Q Q, Wang R, Li R J, Wang Z Q, Liu H X, Cui Q H, Guo S L, Dang T H, Ju X T. Effect of reduced nitrogen fertilization on spring maize production and environmental impacts in rainfed areas. J Agro-Environ Sci, 2016, 35: 1202-1209. (in Chinese with English abstract)
[19] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响. 作物学报, 2022, 48: 180-192.
doi: 10.3724/SP.J.1006.2022.03071
Zhang Q, Han B S, Zhang B, Sheng K, Li L T, Wang Y L. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement. Acta Agron Sin, 20 22, 48: 180-192. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03071
[20] 冯小杰, 战秀梅, 王颖, 赵蔚, 王雪鑫, 李俊, 何天池, 陈坤, 彭靖, 韩晓日. 稳定性氮肥减施对春玉米氮素吸收及土壤无机氮供应的影响. 植物营养与肥料学报, 2020, 26: 1216-1225.
Feng X J, Zhan X M, Wang Y, Zhao W, Wang X X, Li J, He T C, Chen K, Peng J, Han X R. Effects of stabilized nitrogen fertilizer reduction on nitrogen uptake of spring maize and inorganic nitrogen supply in soils. J Plant Nutr Fert, 2020, 26: 1216-1225. (in Chinese with English abstract)
[21] 郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响. 水土保持学报, 2019, 33(4): 221-227.
Zheng L F, Wu S D, Dang T H. Effects of different fertilization models on spring maize yield, water use efficiency and nitrate nitrogen residue. J Soil Water Conser, 2019, 33(4): 221-227. (in Chinese with English abstract)
[22] 董强, 吴得峰, 党廷辉, 郭胜利. 黄土高原南部不同减氮模式对春玉米产量及土壤硝态氮残留的影响. 植物营养与肥料学报, 2017, 23: 856-863.
Dong Q, Wu D F, Dang T H, Guo S L. Effects of different nitrogen reduction modes on yield of spring maize and nitrate-N residue in soils of the southern Loess Plateau. J Plant Nutr Fert, 2017, 23: 856-863. (in Chinese with English abstract)
[23] Albayrak E, Erensal Y C. Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. J Intell Manuf, 2004, 15: 491-503.
doi: 10.1023/B:JIMS.0000034112.00652.4c
[24] Zou Z H, Yun Y, Sun J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci, 2006, 18: 1020-1023.
doi: 10.1016/S1001-0742(06)60032-6
[25] 赵奎, 刘维发, 曾鹏, 张亮. 基于博弈论组合赋权 TOPSIS法的深部进路参数优选. 有色金属科学与工程, 2018, 9(2): 70-74.
Zhao K, Liu W F, Zeng P, Zhang L. Optimization of structural parameters of deep stope based on combination weighting game theory. Nonfer Metals Sci Eng, 2018, 9(2): 70-74. (in Chinese with English abstract)
[26] Wang F, Kang S Z, Du T S, Li F S, Qiu R J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric Water Manag, 2011, 98: 1228-1238.
doi: 10.1016/j.agwat.2011.03.004
[27] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 257-270.
Bao S D. Soil and Agro-Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 257-270. (in Chinese)
[28] 戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50: 956-965.
Dai J, Wang Z H, Li Q, Li M H, Li F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedol Sin, 2013, 50: 956-965. (in Chinese with English abstract)
[29] 郭丙玉, 高慧, 唐诚, 刘涛, 褚贵新. 水肥互作对滴灌玉米氮素吸收、水氮利用效率及产量的影响. 应用生态学报, 2015, 26: 3679-3686.
Guo B Y, Gao H, Tang C, Liu T, Chu G X. Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition. Chin J Appl Ecol, 2015, 26: 3679-3686. (in Chinese with English abstract)
[30] 邢维芹, 王林权, 骆永明, 李立平, 李生秀. 半干旱地区玉米的水肥空间耦合效应研究. 农业工程学报, 2002, 18(6): 46-49.
Xing W Q, Wang L Q, Luo Y M, Li L P, Li S X. Effect of spacial coupling between irrigation water and fertilizer on corn in semiarid area. Trans CSAE, 2002, 18(6): 46-49. (in Chinese with English abstract)
[31] 谢英荷, 栗丽, 洪坚平, 王宏庭, 张璐. 施氮与灌水对夏玉米产量和水氮利用的影响. 植物营养与肥料学报, 2012, 18: 1354-1361.
Xie Y H, Li L, Hong J P, Wang H T, Zhang L. Effects of nitrogen application and irrigation on grain yield, water and nitrogen utilizations of summer maize. Plant Nutr Fert Sci, 2012, 18: 1354-1361. (in Chinese with English abstract)
[32] 李广浩, 董树亭, 赵斌, 张吉旺, 刘鹏. 不同土壤水分状况下实现夏玉米高产及氮素高效的控释尿素用量研究. 植物营养与肥料学报, 2018, 24: 579-589.
Li G H, Dong S T, Zhao B, Zhang J W, Liu P. Optimal application rates of controlled release urea for high yield and high nitrogen use efficiency of summer maize under different soil water conditions. J Plant Nutr Fert, 2018, 24: 579-589. (in Chinese with English abstract)
[33] 侯云鹏, 孔丽丽, 杨建, 尹彩侠, 秦裕波, 李前, 于雷, 王立春, 谢佳贵. 氮肥运筹对春玉米产量、养分吸收和转运的影响. 玉米科学, 2016, 24(4): 137-143.
Hou Y P, Kong L L, Yang J, Yin C X, Qin Y B, Li Q, Yu L, Wang L C, Xie J G. Effects of nitrogen fertilizer management on yield, nutrient absorption and translocation of spring maize. J Maize Sci, 2016, 24(4): 137-143. (in Chinese with English abstract)
[34] 刘凡, 刘斌祥, 刘佳媛, 杜霞, 孔凡磊, 袁继超. 水氮互作对川中丘陵区玉米水肥利用效率和产量形成的影响. 干旱地区农业研究, 2021, 39(6): 200-206.
Liu F, Liu B X, Liu J Y, Du X, Kong F L, Yuan J C. Effect of water and nitrogen interaction on maize utilization efficiency of fertilizer, water, and yield formation in the middle hilly area of Sichuan province. Agric Res Arid Areas, 2021, 39(6): 200-206. (in Chinese with English abstract)
[35] 杨学云, 张树兰, 袁新民, 同延安. 长期施肥对塿土硝态氮分布、累积和移动的影响. 植物营养与肥料学报, 2001, 7: 134-138.
Yang X Y, Zhang S L, Yuan X M, Tong Y A. A long-term experiment on effect of organic manure and chemical fertilizer on distribution, accumulation, and movement of NO3-N in soil. Plant Nutr Fert Sci, 2001, 7: 134-138. (in Chinese with English abstract)
[36] Manevski K, Brgesen C D, Li X X. Optimising crop production and nitrate leaching in China: measured and simulated effects of straw incorporation and nitrogen fertilization. Eur J Agron, 2016, 80: 32-44.
doi: 10.1016/j.eja.2016.06.009
[37] Zhou S L, Wu Y C, Wang Z M, Lu L Q, Wang R Z. The nitrate leached below maize root zone is available for deep rooted wheat in winter wheat-summer maize rotation in the North China Plain. Environ Pollut, 2008, 152: 723-730.
doi: 10.1016/j.envpol.2007.06.047
[38] 王朝辉, 李生秀, 王西娜, 苏涛. 旱地土壤硝态氮残留淋溶及影响因素研究. 土壤, 2006, 38: 676-681.
Wang Z H, Li S X, Wang X N, Su T. Nitrate nitrogen residue and leaching in dryland soil and influence factors. Soils, 2006, 38: 676-681. (in Chinese with English abstract)
[39] Moreno F, Cayuela J A, Fermández-Boy J E, Murillo J M, Cabrera F. Water balance and nitrate leaching in an irrigation maize crop in SW Spain. Agric Water Manag, 1996, 32: 71-83.
doi: 10.1016/S0378-3774(96)01256-5
[40] 李建明, 于雪梅, 王雪威, 张俊威, 焦晓聪, 黄茜. 基于产量品质和水肥利用效率西瓜滴灌水肥制度优化. 农业工程学报, 2020, 36(9): 75-83.
Li J M, Yu X M, Wang X W, Zhang J W, Jiao X C, Huang Q. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality and fertilizer and water use efficiency. Trans CSAE, 2020, 36(9): 75-83. (in Chinese with English abstract)
[41] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛. 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014, 30(10): 82-90.
Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L, Liu Y. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans CSAE, 2014, 30(10): 82-90. (in Chinese with English abstract)
[42] 钟华, 郭旋, 李鹏, 张成军, 赵同科. 东北雨养玉米氮肥优化管理综合评价. 植物营养与肥料学报 2022, 28: 357-365.
Zhong H, Guo X, Li P, Zhang C J, Zhao T K. Comprehensive assessment of nitrogen fertilizer management for maize in northeast rainfed region. J Plant Nutr Fert, 2022, 28: 357-365. (in Chinese with English abstract)
[1] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[2] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[3] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[4] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[5] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[6] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[7] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[8] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[9] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[10] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[11] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
[12] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[13] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[14] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[15] 刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析[J]. 作物学报, 2023, 49(3): 795-807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .