欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1282-1291.doi: 10.3724/SP.J.1006.2023.21026

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

弱筋小麦育种品质选择指标及亲本组配原则

张晓1(), 陆成彬1, 江伟1, 张勇1, 吕国锋1, 吴宏亚1, 王朝顺1, 李曼1, 吴素兰1, 高德荣1,2,*()   

  1. 1江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州 225007
    2扬州大学/江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2022-04-07 接受日期:2022-10-10 出版日期:2023-05-12 网络出版日期:2022-11-01
  • 通讯作者: *高德荣, E-mail: gdr@wheat.org.cn
  • 作者简介:E-mail: zhangxiao820218@163.com
  • 基金资助:
    国家自然科学基金项目(32071999);江苏省重点研发计划项目(BE2021335);江苏省种业振兴揭榜挂帅项目(JBGS [2021] 006);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03-8)

Quality selection indices and parent combination principle of weak-gluten wheat

ZHANG Xiao1(), LU Cheng-Bin1, JIANG Wei1, ZHANG Yong1, LYU Guo-Feng1, WU Hong-Ya1, WANG Chao-Shun1, LI Man1, WU Su-Lan1, GAO De-Rong1,2,*()   

  1. 1Lixiahe Institute of Agricultural Sciences of Jiangsu /Key Laboratory of Wheat Biology and Genetic Improvement for Low&Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    2Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-04-07 Accepted:2022-10-10 Published:2023-05-12 Published online:2022-11-01
  • Contact: *E-mail: gdr@wheat.org.cn
  • Supported by:
    National Science Foundation of China(32071999);Key Research and Development Program of Jiangsu Province(BE2021335);Seed Industry Revitalization Jie Bang Gua Shuai Project of Jiangsu Province(JBGS [2021] 006);China Agriculture Research System of MOF and MARA(CARS-03-8)

摘要:

为明确弱筋小麦育种高效品质选择指标以及亲本组配原则, 本研究选用7个不同品质类型品种作亲本, 按7×6半双列杂交配制21个组合, 对F2籽粒主要品质指标进行了遗传分析。结果表明, 不同品质指标的一般配合力(general combining ability, GCA)差异极显著, 其中硬度、SDS沉淀值和溶剂保持力(solvent retention capacity, SRC)效应值大, 蛋白质含量和面筋含量效应值较小; 不同品质指标的特殊配合力(special combining ability, SCA)除蛋白质含量、沉淀值、蔗糖SRC和面筋指数无显著差异, 其余均存在显著或极显著差异; 硬度、SDS沉淀值和SRC一般配合力远大于特殊配合力, 以加性效应的遗传为主。弱筋小麦品质指标一般配合力负向效应显著; 中强筋小麦品质指标一般配合力正向效应显著。硬度、SDS沉淀值、水SRC和碳酸钠SRC, 狭义遗传力分别为91.23%、82.66%、83.81%和83.96%, 遗传力高, 可在早期世代进行选择; 其次是乳酸SRC和蔗糖SRC, 狭义遗传力分别为72.79%和75.26%; 蛋白质含量、湿面筋含量、干面筋含量和面筋指数, 狭义遗传力分别为30.72%、25.62%、32.62%和49.82%, 遗传力较低。对不同组合高代品系品质分析表明, 弱筋/弱筋小麦组合后代籽粒硬度、蛋白质含量、SDS沉淀值和SRC等品质指标最低, 弱筋/强筋小麦组合居中, 强筋/强筋小麦和中筋/强筋小麦组合最高。硬度、SDS沉淀值、水SRC和碳酸钠SRC是弱筋小麦品质育种的高效选择指标; 弱筋小麦品质育种亲本组配, 至少要有一个弱筋品质类型的亲本。

关键词: 弱筋小麦, 品质选择, 亲本组配, 配合力, 遗传

Abstract:

To identify the efficient indices of quality selection and the principle of parent combination for weak-gluten wheat, a 7×6 diallel crossing of Griffing II analysis involving 21 combinations of seven wheat varieties with different quality types was performed, and genetic analyses of the quality indices of F2 kernels was carried out. The results showed there were extremely significant differences in general combining ability (GCA) of the quality indices. The effect values of GCA of hardness, sodium dodecyl sulfate (SDS) sedimentation value, and solvent retention capacity (SRC) were relatively higher, while those of GCA of protein content and gluten content were relatively lower. Meanwhile, significant or extremely significant differences in special combining ability (SCA) of the quality indices were observed, except for protein content, SDS sedimentation value, sucrose SRC, and gluten index. Hardness, SDS sedimentation value, and SRC had the high general combining ability, indicating that additive effect was dominant. The negative GCA effects of weak-gluten wheat and the positive GCA effects of mid-gluten and strong-gluten wheat were significant. The narrow heritability of hardness, SDS sedimentation value, water SRC, and sodium carbonate SRC was as high as 91.23%, 82.66%, 83.81%, and 83.96%, respectively, indicating that they could be strictly screened in the early generations. The narrow heritability of lactic acid SRC and sucrose SRC was 72.79% and 75.26%, respectively. The narrow heritability of protein content, wet gluten content, dry gluten content, and gluten index was as low as 30.72%, 25.62%, 32.62%, and 49.82%, respectively. The quality analysis of high generation lines in different combinations revealed that grain hardness, protein content, SDS sedimentation value, SRC, and other quality indices of the descendant of weak-gluten/weak-gluten wheat combinations were the lowest, followed by those of the weak-gluten/strong-gluten wheat combinations, while those of the strong-gluten/strong-gluten and medium-gluten/strong-gluten wheat combinations were the highest with the rare separation of weak-gluten lines. In conclusion, hardness, SDS sedimentation value, water SRC, and sodium carbonate SRC were the high-efficient selection indices for quality breeding. We suggested at least one parent of weak-gluten quality should be selected in the breeding of weak-gluten wheat.

Key words: weak-gluten wheat, quality selection, principle of parent combination, combining ability, heritability

表1

不同品质性状配合力方差分析(F值)"

变异来源
Source of variance
硬度
Grain
hardness
蛋白质含量
Protein
content
SDS沉淀值
SDS
sedimentation value
水SRC
Water
SRC
乳酸SRC
Lactic
acid SRC
蔗糖SRC
Sucrose
SRC
碳酸钠SRC
Sodium
carbonate SRC
湿面筋含量
Wet gluten
content
干面筋含量
Dry gluten
content
面筋指数
Gluten
index
一般配合力 GCA 512.51** 0.77** 7.97** 66.11** 78.06** 76.33** 151.02** 9.76** 2.79** 166.50**
特殊配合力 SCA 11.75** 0.21 0.29 3.75** 7.20** 4.20 6.61** 3.64* 0.81* 26.67

表2

7个亲本品质性状一般配合力效应分析"

亲本
Parent
籽粒硬度
Grain
hardness
蛋白质含量
Protein
content
SDS沉淀值
SDS
sedimentation value
水SRC
Water
SRC
乳酸SRC
Lactic
acid SRC
蔗糖SRC
Sucrose
SRC
碳酸钠SRC
Sodium
carbonate
SRC
湿面筋含量
Wet gluten
content
干面筋含量
Dry gluten
content
面筋指数
Gluten
index
扬麦13
Yangmai 13
-9.53 d 0.38 a -1.05 c -4.74 e -4.59 e -5.39 d -6.82 d 1.87 a 1.22 a -4.14 cd
扬麦16
Yangmai 16
11.84 a 0.42 a 1.07 b 2.97 b 2.91 b 3.66 ab 5.65 ab 1.46 ab 0.72 ab -3.11 bcd
扬麦18
Yangmai 18
-10.63 d 0.05 abc -1.04 c -2.41 d -3.35 de -2.50 c -3.16 c -0.22 bc 0.04 bc -7.31 d
扬麦20
Yangmai 20
-5.54 c -0.22 bcd -1.02 c -2.73 d -2.85 d -2.83 c -5.13 d -0.71 cd -0.33 cd -2.08 bc
扬麦23
Yangmai 23
7.03 b -0.24 cd 1.08 b 2.25 b 2.92 b 2.72 b 4.16 b -0.62 cd -0.26 cd 6.77 a
扬麦24
Yangmai 24
-5.75 c -0.65 d -0.86 c -0.73 c -0.98 c -0.83 c -1.55 c -2.23 d -1.03 d 1.71 b
镇麦9号
Zhenmai 9
12.57 a 0.26 ab 1.82 a 5.41 a 5.94 a 5.18 a 6.85 a 0.45 abc -0.35 cd 8.16 a

表3

21个杂交组合硬度特殊配合力效应分析"

亲本
Parent
扬麦16
Yangmai 16
扬麦18
Yangmai 18
扬麦20
Yangmai 20
扬麦23
Yangmai 23
扬麦24
Yangmai 24
镇麦9号
Zhenmai 9
扬麦13 Yangmai 13 -3.42 3.93 -0.17 2.74 2.65 -5.73
扬麦16 Yangmai 16 1.34 -0.57 1.70 -1.95 2.90
扬麦18 Yangmai 18 0.34 0.42 -2.78 -3.25
扬麦20 Yangmai 20 -1.89 2.39 -0.09
扬麦23 Yangmai 23 -4.72 1.75
扬麦24 Yangmai 24 4.42

表4

21个杂交组合水SRC特殊配合力效应分析"

亲本
Parent
扬麦16
Yangmai 16
扬麦18
Yangmai 18
扬麦20
Yangmai 20
扬麦23
Yangmai 23
扬麦24
Yangmai 24
镇麦9号
Zhenmai 9
扬麦13 Yangmai 13 -1.18 1.90 1.55 0.44 0.68 -3.39
扬麦16 Yangmai 16 -0.34 -0.93 1.23 -2.47 3.69
扬麦18 Yangmai 18 1.27 -1.16 -0.05 -1.62
扬麦20 Yangmai 20 -1.64 0.28 -0.54
扬麦23 Yangmai 23 0.41 0.71
扬麦24 Yangmai 24 1.15

表5

小麦品质性状的遗传参数"

品质性状
Quality trait
加性方差
Additive
variance
显性方差
Dominance
variance
遗传方差
Genetic
variance
表型方差
Phenotypic
variance
遗传决定度
Degree of genetic
determination
狭义遗传力
Narrow sense
heritability
籽粒硬度 Grain hardness 200.30 8.01 208.31 219.55 94.88 91.23
蛋白质含量 Protein content 0.22 0.06 0.29 0.73 39.28 30.72
SDS沉淀值 Sedimentation value 3.07 0.12 3.19 3.72 85.86 82.66
水SRC Water SRC 24.94 3.21 28.15 29.76 94.59 83.81
乳酸SRC Lactic acid SRC 28.35 5.50 33.84 38.94 86.90 72.79
蔗糖SRC Sucrose SRC 28.85 1.56 30.41 38.34 79.31 75.26
碳酸钠SRC Sodium carbonate SRC 57.77 4.40 62.16 68.80 90.35 83.96
湿面筋含量 Wet gluten content 2.45 1.91 4.35 9.55 45.56 25.62
干面筋含量 Dry gluten content 0.79 0.40 1.19 2.43 48.91 32.62
面筋指数 Gluten index 55.94 11.83 67.77 112.27 60.36 49.82

表6

不同品质类型组合高代品系品质表现(2020年)"

品质性状
Quality
trait
扬麦16/镇麦168
Yangmai 16/Zhenmai 168
扬麦15/镇麦9号
Yangmai 15/Zhenmai 9
扬麦9号/扬麦18
Yangmai 9/Yangmai 18
变幅
Range
平均值
Mean±SD
变幅
Range
平均值
Mean±SD
变幅
Range
平均值
Mean±SD
籽粒硬度 Grain hardness 44.70-55.63 49.68±2.68 3.67-60.56 23.05±19.81 0.55-10.56 5.04±2.93
蛋白质含量 Protein content (%) 12.25-15.86 13.86±0.71 12.01-13.58 12.83±0.52 10.76-12.78 12.18±0.45
沉淀值 Sedimentation value (mL) 11.50-18.00 15.06±1.35 9.75-14.50 11.54±1.19 5.25-10.00 7.51±1.18
水SRC Water solvent retention capacity (%) 77.66-88.43 83.26±2.28 70.06-85.77 75.63±4.63 71.26-76.22 73.79±1.55

图1

不同品质类型组合高代品系品质表现 盒图两端表示性状的极值范围; 图中方框表示平均值; 中间直线表示中位线; ?为个别极值。A代表组合扬麦16/镇麦168; B代表组合扬麦15/镇麦9号; C代表组合扬麦9号/扬麦18。"

表7

不同品质类型组合高代品系品质表现(2021年)"

品质性状
Quality
trait
西农529/镇麦9号
Xinong 529/Zhenmai 9
扬麦22/镇麦9号
Yangmai 22/Zhenmai 9
扬麦22/扬辐麦4号
Yangmai 22/Yangfumai 4
变幅
Range
平均值 Mean±SD 变幅
Range
平均值 Mean±SD 变幅
Range
平均值Mean±SD
蛋白质含量 Protein content (%) 11.99-15.02 13.26±0.69 11.05-14.92 12.51±0.79 10.55-13.44 11.78±0.68
沉淀值 Sedimentation value (mL) 7.75-14.25 10.98±1.61 5.00-15.25 10.27±2.94 2.50-12.50 5.65±1.52
水SRC Water SRC (%) 68.12-92.48 79.48±6.37 65.18-75.60 70.79±2.60 64.94-73.62 68.57±2.33
乳酸SRC Lactic acid SRC (%) 60.18-99.66 86.23±7.74 69.58-86.90 78.22±3.62 66.46-79.02 70.82±2.71
碳酸钠SRC Sodium carbonate SRC (%) 85.06-119.88 103.93±11.01 80.50-94.740 87.73±3.31 78.32-87.90 82.96±2.23
蔗糖SRC Sucrose SRC (%) 95.24-125.92 113.59±9.17 95.06-106.96 100.93±2.77 86.48-99.46 91.88±3.49

图2

不同品质类型组合高代品系品质表现 盒图两端表示性状的极值范围; 图中方框表示平均值; 中间直线表示中位线; ?为个别极值。A1代表组合西农529/镇麦9号; B1代表组合扬麦22/镇麦9号; C1代表组合扬麦22/扬辐麦4号。"

[1] 魏益民, 张波, 关二旗, 张国权, 张影全, 宋哲民. 中国冬小麦品质改良研究进展. 中国农业科学, 2013, 46: 4189-4196.
doi: 10.3864/j.issn.0578-1752.2013.20.002
Wei Y M, Zhang B, Guan E Q, Zhang G Q, Zhang Y Q, Song Z M. Advances in study of quality property improvement of winter wheat in China. Sci Agric Sin, 2013, 46: 4189-4196. (in Chinese with English abstract)
[2] 张晓, 张勇, 高德荣, 别同德, 张伯桥. 中国弱筋小麦育种进展及生产现状. 麦类作物学报, 2012, 32: 184-189.
Zhang X, Zhang Y, Gao D R, Bie T D, Zhang B Q. The development of weak-gluten wheat breeding and present situation of its production. J Triticeae Crops, 2012, 32: 184-189. (in Chinese with English abstract)
[3] 刘健, 张晓, 李曼, 文莉, 江伟, 张勇, 高德荣. 扬麦系列小麦品种的饼干品质分析. 麦类作物学报, 2021, 41: 50-60.
Liu J, Zhang X, Li M, Wen L, Jiang W, Zhang Y, Gao D R. Quality analysis of Yangmai series wheat varieties for biscuit-making. J Triticeae Crops, 2021, 41: 50-60 (in Chinese with English abstract).
[4] 刘莲. 小麦部分品质性状与主要农艺性状的遗传及配合力分析. 山东农业大学硕士学位论文, 山东泰安, 2004.
Liu L. The Analysis of Genetic and Combining Ability for Some Quality and Major Agronomic Characters in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2004. (in Chinese with English abstract)
[5] 桑伟. 冬小麦F1、F2代主要品质性状和产量性状杂种优势的关系及其遗传分析. 石河子大学硕士学位论文, 新疆石河子, 2007.
Sang W. Study on Heterosis and Inheritance of Main Quality and Yield Traits of Winter Wheat in F1 and F2 Hybrid. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2007. (in Chinese with English abstract)
[6] 姚金保, 杨学明, 姚国才, 张艳, 顾正中, 周羊梅. 弱筋小麦品种蛋白质含量的遗传分析. 麦类作物学报, 2007, 27: 1005-1009.
Yao J B, Yang X M, Yao G C, Zhang Y, Gu Z Z, Zhou Y M. Inheritance of protein content in weak gluten wheat cultivars. J Triticeae Crops, 2007, 27: 1005-1009. (in Chinese with English abstract)
[7] 张媛菲, 彭绍峰, 郭军伟, 雷全奎, 王洁琼, 吕树作. 几个小麦品种品质性状遗传特性分析. 作物研究, 2020, 34: 469-475.
Zhang Y F, Peng S F, Guo J W, Lei Q K, Wang J Q, Lyu S Z. Genetic characteristics analysis of quality traits in wheat. Crop Res, 2020, 34: 469-475. (in Chinese with English abstract)
[8] Pasha I, Anjum F M, Morris C F. Grain hardness: a major determinant of wheat quality. Food Sci Technol Internat, 2010, 16: 511-522.
doi: 10.1177/1082013210379691
[9] Ma F, Baik B K. Soft wheat quality characteristics required for making baking powder biscuits. J Cereal Sci, 2018, 79: 127-133.
doi: 10.1016/j.jcs.2017.10.016
[10] Zheng B Q, Zhao H, Zhou Q, Cai J, Wang X, Cao W X, Dai T B, Jiang D. Relationships of protein composition, gluten structure, and dough rheological properties with short biscuits quality of soft wheat varieties. Agron J, 2020, 112: 1921-1930.
doi: 10.1002/agj2.v112.3
[11] Huebner F R, Bietz J A, Nelsen T, Bains G S, Finney P L. Soft wheat quality as related to protein composition. Cereal Chem, 1999, 76: 650-655.
doi: 10.1094/CCHEM.1999.76.5.650
[12] Bettge A D, Morris C F. Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chem, 2000, 77: 241-247.
doi: 10.1094/CCHEM.2000.77.2.241
[13] Gaines C S. Prediction of sugar-snap cookie diameter using sucrose solvent retention capacity, milling softness, and flour protein content. Cereal Chem, 2004, 81: 549-552.
doi: 10.1094/CCHEM.2004.81.4.549
[14] 陈满峰. 弱筋小麦面粉理化品质性状遗传变异、肥料运筹及其与酥性饼干品质的关系. 扬州大学硕士学位论文, 江苏扬州, 2008.
Chen M F. The Variation of Flour Quality Characters and the Fertilizer Operations in Chinese soft Wheat and Correlation with the Short Biscuit Quality. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2008. (in Chinese with English abstract)
[15] 吴宏亚. 农学角度的中国饼干研究. 扬州大学博士学位论文, 江苏扬州, 2014.
Wu H Y. Chinese Biscuit Study-from View of Agronomy. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2014. (in Chinese with English abstract)
[16] Jeon S, Baik B K, Kweon M. Solvent retention capacity application to assess soft wheat flour quality for making white-salted noodles. Cereal Chem, 2019, 96: 497-507.
doi: 10.1002/cche.2019.96.issue-3
[17] Bettge A D, Morris C F, DeMacon V L, Kidwell K K. Adaptation of AACC method 56-11, solvent retention capacity, for use as an early generation selection tool for cultivar development. Cereal Chem, 2002, 79: 670-674.
doi: 10.1094/CCHEM.2002.79.5.670
[18] 张岐军, 张艳, 何中虎, Pena R J. 软质小麦品质性状与酥性饼干品质参数的关系研究. 作物学报, 2005, 31: 1125-1131.
Zhang Q J, Zhang Y, He Z H, Pena R J. Relationship between soft wheat quality traits and cookie quality parameters. Acta Agron Sin, 2005, 31: 1125-1131. (in Chinese with English abstract)
[19] Kweon M, Slade L, Levine H. Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding: a review. Cereal Chem, 2011, 88: 537-552.
doi: 10.1094/CCHEM-07-11-0092
[20] Souza E J, Sneller C, Guttieri M J, Sturbaum A, Griffey C, Sorrells M, Ohm H, Sanford D V. Basis for selecting soft wheat for end-use quality. Crop Sci, 2012, 52: 21-31.
doi: 10.2135/cropsci2011.02.0090
[21] 张晓, 李曼, 江伟, 朱冬梅, 高德荣. 小麦三个品质性状微量检测方法的应用与评价. 麦类作物学报, 2014, 34: 1651-1655.
Zhang X, Li M, Jiang W, Zhu D M, Gao D R. Application and evaluation of three micro detection methods for process quality in wheat breeding. J Triticeae Crops, 2014, 34: 1651-1655. (in Chinese with English abstract)
[22] 郭天财, 马冬云, 朱云集, 王晨阳, 夏国军, 罗毅. 冬播小麦品种主要品质性状的基因型与环境及其互作效应分析. 中国农业科学, 2004, 37: 948-953.
Guo T C, Ma D Y, Zhu Y Q, Wang C Y, Xia G J, Luo Y. Geneotype, environment and their interactive effects on main quality traits of winter-sown wheat variety. Sci Agric Sin, 2004, 37: 948-953. (in Chinese with English abstract)
[23] Kong L A, Si J S, Zhang B, Feng B, Li S D, Wang F H. Environmental modification of wheat grain protein accumulation and associated processing quality: a case study of China. Austr J Crop Sci, 2013, 7: 173-181.
[24] 李朝苏, 吴晓丽, 汤永禄, 杨武云, 吴元奇, 吴春, 马孝玲, 李式昭. 四川近十年小麦主栽品种的品质状况. 作物学报, 2016, 42: 803-812.
doi: 10.3724/SP.J.1006.2016.00803
Li Z S, Wu X L, Tang Y L, Yang W Y, Wu Y Q, Wu C, Ma X L, Li S Z. Quality of major wheat cultivars grown in Sichuan province in recent decade. Acta Agron Sin, 2016, 42: 803-812. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00803
[25] 高德荣, 宋归华, 张晓, 张伯桥, 李曼, 江伟, 吴素兰. 弱筋小麦扬麦13品质对氮肥响应的稳定性分析. 中国农业科学, 2017, 50: 4100-4106.
doi: 10.3864/j.issn.0578-1752.2017.21.004
Gao D R, Song G H, Zhang X, Zhang B Q, Li M, Jiang W, Wu S L. Quality consistency of soft wheat Yangmai 13 under different. Sci Agric Sin, 2017, 50: 4100-4106. (in Chinese with English abstract)
[26] 张美微, 王晨阳, 郭天财, 马冬云, 朱云集. 施氮量对冬小麦蛋白质品质和面粉色泽的影响. 植物营养与肥料学报, 2012, 18: 1312-1318.
Zhang M W, Wang C Y, Guo T C, Ma D Y, Zhu Y J. Effects of nitrogen fertilization on protein quality and flour color of winter wheat. Plant Nutr Fert Sci, 2012, 18: 1312-1318. (in Chinese with English abstract)
[27] 金欣欣, 姚艳荣, 贾秀领, 姚海坡, 申海平, 崔永增, 李谦. 基因型和环境对小麦产量、品质和氮素效率的影响. 作物学报, 2019, 45: 635-644.
doi: 10.3724/SP.J.1006.2019.81072
Jin X X, Yao Y R, Jia X L, Yao H P, Shen H P, Cui Y Z, Li Q. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency. Acta Agron Sin, 2019, 45: 635-644. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.81072
[28] De Santis M A, Giuliani M M, Flagella Z, Reyneri A, Blandino M. Impact of nitrogen fertilization strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res, 2020, 254: 107829.
doi: 10.1016/j.fcr.2020.107829
[29] 张晓, 李曼, 刘大同, 江伟, 张勇, 高德荣. 扬麦系列品种品质性状分析及育种启示. 中国农业科学, 2020, 53: 1309-1321.
doi: 10.3864/j.issn.0578-1752.2020.07.002
Zhang X, Li M, Liu D T, Jiang W, Zhang Y, Gao D R. Analysis of quality traits and breeding inspiration in Yangmai series wheat varieties. Sci Agric Sin, 2020, 53: 1309-1321. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.07.002
[30] 李曼, 张晓, 刘大同, 江伟, 高德荣, 张勇. 弱筋小麦品质评价指标研究. 核农学报, 2021, 35: 1979-1986.
doi: 10.11869/j.issn.100-8551.2021.09.1979
Li M, Zhang X, Liu D T, Jiang W, Gao D R, Zhang Y. Research on quality evaluation indices of weak gluten wheat. J Nucl Agric Sci, 2021, 35: 1979-1986. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.09.1979
[31] 陈锋, 李根英, 耿洪伟, 夏兰芹, 夏先春, 何中虎. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005, 38: 1088-1094.
Chen F, Li G Y, Geng H W, Xia L Q, Xia X C, He Z H. Review and prospect of wheat kernel hardness and its molecular genetics basis. Sci Agric Sin, 2005, 38: 1088-1094. (in Chinese with English abstract)
[1] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[2] 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572.
[3] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[4] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[5] 韩贝, 孙思敏, 孙伟男, 杨细燕, 张献龙. 植物体细胞胚胎发生的分子机制[J]. 作物学报, 2023, 49(2): 299-309.
[6] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[7] 严威凯. 品种选育与评价的原理和方法评述[J]. 作物学报, 2022, 48(9): 2137-2154.
[8] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[9] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[10] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870.
[11] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
[12] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[13] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[14] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .