欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3038-3051.doi: 10.3724/SP.J.1006.2025.54054

• 耕作栽培·生理生化 • 上一篇    下一篇

马铃薯茎秆、叶片原位降解过程中的微生物群落演化规律

曾豫1,2(), 郭华春1, 杨勇涛1, 王玉龙1, 何安乐1, 王琼1, 白磊1, 李俊1,*(), 张锐1,*()   

  1. 1 云南农业大学农学与生物技术学院, 云南昆明 650201
    2 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2025-04-28 接受日期:2025-08-13 出版日期:2025-11-12 网络出版日期:2025-08-14
  • 通讯作者: *李俊, E-mail: nxy8mm@163.com; 张锐, E-mail: 2021050@ynau.edu.cn
  • 作者简介:E-mail: 2218764374@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1601802);国家自然科学基金地区项目(32260543);云南省科技厅基础研究专项(202301AU070118)

Microbial community succession during in situ degradation of potato stems and leaves

ZENG Yu1,2(), GUO Hua-Chun1, YANG Yong-Tao1, WANG Yu-Long1, HE An-Le1, WANG Qiong1, BAI Lei1, LI Jun1,*(), ZHANG Rui1,*()   

  1. 1 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2 College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2025-04-28 Accepted:2025-08-13 Published:2025-11-12 Published online:2025-08-14
  • Contact: *E-mail: nxy8mm@163.com; E-mail: 2021050@ynau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1601802);Regional Program of National Natural Science Foundation of China(32260543);Basic Research Special Project of Yunnan Provincial Science and Technology Department(202301AU070118)

摘要:

为探究马铃薯秸秆不同部位腐解特征、养分释放特性以及秸秆微生物群落结构变化特点, 本试验采用尼龙网袋法, 以未还田的新鲜茎秆、叶片以及整株秸秆作为对照, 分别设置马铃薯茎秆腐解处理(S)、叶片腐解处理(L)以及整株腐解处理(W); 在埋入土壤后第30、60、90和120天时进行取样, 分析不同处理的腐解特征、养分释放规律以及秸秆微生物群落结构的差异。结果表明, 茎秆、叶片、整株的累积腐解率均表现为先快后慢, 0~30 d叶片的腐解率最高, 为67.96%, 整株、茎秆的腐解率分别为52.43%和40.22%。各处理养分累积释放率均为K>P>N, 120 d时叶片N素释放率最高、茎秆P素释放率最高。此外, 各处理细菌、真菌α多样性均呈先升后降的变化趋势, 且在90 d时达到最高峰值; 其中, 细菌的优势菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteriota), 相对丰度分别为34.57%~62.44%、10.64%~33.79%; 真菌的优势菌门为子囊菌门(Ascomycota), 相对丰度为87.35%~99.77%。叶片、整株腐解能显著提高放线菌门相对丰度, 而茎秆腐解对厚壁菌门(Firmicutes)相对丰度提升效果显著。在属水平上, 细菌的优势菌属为unclassified_f__Rhizobiaceae、德沃斯氏菌属(Devosia)、戈登氏菌属(Gordonia), 相对丰度分别为2.31%~13.57%、2.29%~10.27%、0.29%~11.07%; 真菌的优势菌属为Gibellulopsisunclassified_f__Plectosphaerellaceae、小不整球壳属(Plectosphaerella), 相对丰度分别为10.56%~59.85%、8.29%~44.16%、8.92%~44.88%。相关性分析结果表明, 黄色类固醇杆菌属(Steroidobacter)、芽孢杆菌属(Bacillus)等细菌属与秸秆累积腐解率呈极显著正相关, 与秸秆养分呈显著负相关; 而阔足柄孢壳菌属(Zopfiella)、节丛孢属(Arthrobotrys)等真菌属与秸秆累积腐解率呈极显著正相关, 与秸秆养分呈极显著负相关。综上, 叶片在0~30 d内腐解效果最佳, 整株、茎秆在60~120 d内腐解效果较好; 各处理90 d内均能增加微生物群落丰富度、多样性以及物种数目。与细菌菌属相比, 真菌菌属在促进秸秆腐解和养分释放方面表现出更强的优势。

关键词: 马铃薯秸秆, 原位降解, 腐解率, 养分释放, 秸秆微生物群落

Abstract:

To investigate the decomposition characteristics, nutrient release patterns, and dynamics of microbial community structure across different parts of potato straw, this study employed the nylon mesh bag method. Fresh stem, leaf, and whole-plant straw (not previously returned to the field) were used as controls, with three treatments: stem decomposition (S), leaf decomposition (L), and whole-plant decomposition (W). Samples were collected at 30, 60, 90, and 120 days after soil incorporation to assess differences in decomposition behavior, nutrient release, and microbial community composition under each treatment. The results showed that cumulative decomposition rates for stem, leaf, and whole-plant straw followed a rapid-then-slow pattern, with leaves exhibiting the highest decomposition rate of 67.96% during the first 30 days, compared to 52.43% and 40.22% for whole-plant and stem, respectively. The cumulative nutrient release rates across treatments followed the order K > P > N. By day 120, nitrogen release was highest from leaves, while phosphorus release was highest from stems. In terms of microbial diversity, both bacterial and fungal α-diversity showed an initial increase followed by a decline, peaking at day 90. The dominant bacterial phyla were Proteobacteria (34.57%-62.44%) and Actinobacteriota (10.64%-33.79%), while fungal communities were dominated by Ascomycota (87.35%-99.77%). Leaf and whole-plant treatments significantly increased the relative abundance of Actinobacteriota, whereas stem decomposition significantly enhanced the relative abundance of Firmicutes. At the genus level, dominant bacterial genera included unclassified_f__Rhizobiaceae (2.31%-13.57%), Devosia (2.29%-10.27%), and Gordonia (0.29%-11.07%), while dominant fungal genera included Gibellulopsis (10.56%-59.85%), unclassified_f__Plectosphaerellaceae (8.29%-44.16%), and Plectosphaerella (8.92%-44.88%). Correlation analysis revealed that bacterial genera such as Steroidobacter and Bacillus were strongly positively correlated with cumulative decomposition rates but negatively correlated with residual straw nutrients. In contrast, fungal genera such as Zopfiella and Arthrobotrys were positively correlated with both decomposition rates and nutrient release. In conclusion, leaf straw decomposed most efficiently within the first 30 days, while whole-plant and stem straw showed relatively effective decomposition between 60 and 120 days. All treatments enhanced microbial richness, diversity, and species abundance within 90 days. Compared to bacterial genera, fungal genera played a more prominent role in promoting straw decomposition and nutrient release.

Key words: potato straw, in situ degradation, decomposition rate, nutrient release, microbial community of straw

图1

试验期的月平均温度和降雨量"

图2

秸秆累积腐解率变化 误差线表示3次重复的标准差。"

图3

不同处理间秸秆养分差异 同一时期不同小写字母表示处理间差异在0.05水平上差异显著。误差线表示3次重复的标准差。"

图4

微生物群落α多样性组间差异检验 S30、S60、S90和S120分别代表茎秆腐解第30、60、90和120天; L30、L60、L90和L120分别代表叶片腐解第30、60、90和120天; W30、W60、W90和W120分别代表整柱腐解第30、60、90和120天; a~e表示细菌群落α多样性组间差异检验; A~E表示真菌群落α多样性组间差异检验。a和A: ASV水平的Chao指数; b和B: ASV水平的Shannon指数; c和C: ASV水平的Simpson指数; d和D: ASV水平的Sobs指数; e和E: ASV水平的Coverage指数。数据为3个重复的平均值±标准差。此图展示所选2组样本间的显著性差异情况, 并对有显著性差异的2组进行标记(0.01 < P ≤ 0.05标记为*, 0.001 < P ≤ 0.01标记为**, P ≤ 0.001标记为***)。"

图5

秸秆细菌和真菌在ASV水平上的主坐标分析(PCoA) 图a和图b的缩写同图4。T30: 腐解第30天; T60: 腐解第60天; T90: 腐解第90天; T120: 腐解第120天。图中a、c为秸秆细菌在ASV水平上的主坐标分析; 图中b、d为秸秆真菌在ASV水平上的主坐标分析。"

图6

秸秆细菌和真菌群落ASVs数目 缩写同图4。a: 秸秆细菌群落ASVs数目; b: 秸秆真菌群落ASVs数目。"

图7

秸秆微生物群落在门水平上的分布 缩写同图4。a: 秸秆细菌群落在门水平上的分布; b: 秸秆真菌群落在门水平上的分布。"

图8

秸秆微生物群落在属水平上的分布 缩写同图4。a: 秸秆细菌群落在属水平上的分布; b: 秸秆真菌群落在属水平上的分布。"

图9

不同处理间细菌(a)、真菌(b)在属水平上的Spearman相关性热图 DR: 秸秆累积腐解率; TN: 秸秆氮含量; TP: 秸秆磷含量; TK: 秸秆钾含量。红色和蓝色分别代表正相关和负相关。*、**和***分别表示在0.05、0.01和0.001水平上显著相关。"

[1] 韩凡香, 陈倩, 包正育, 李辉, 周建军, 柴守玺. 秸秆带状覆盖种植马铃薯农田土壤温度及其气温响应特征. 甘肃农业大学学报, 2023, 58(3): 67-75.
Han F X, Chen Q, Bao Z Y, Li H, Zhou J J, Chai S X. Soil temperature characteristics and its response to air temperature in potato fields with straw strip mulching. J Gansu Agric Univ, 2023, 58(3): 67-75 (in Chinese with English abstract).
[2] 孙乐, 景媛媛, 蒋恒, 王娇, 王思仪, 高凤芹. 农作物秸秆还田研究现状与展望. 中国草地学报, 2024, 46(11): 130-140.
Sun L, Jing Y Y, Jiang H, Wang J, Wang S Y, Gao F Q. Research status and prospect of crop straw returning to the field. Chin J Grassland, 2024, 46(11): 130-140 (in Chinese with English abstract).
[3] Lyu H D, He P, Zhao S C. Optimized nitrogen fertilization promoted soil organic carbon accumulation by increasing microbial necromass carbon in potato continuous cropping field. Agronomy, 2024, 14: 307.
[4] 李晓宇, 李金, 毕润学, 金鑫鑫, 范庆锋, 邹洪涛. 玉米秸秆集中深还田对旱地土壤CO2排放特征的影响. 土壤, 2024, 56: 1027-1033.
Li X Y, Li J, Bi R X, Jin X X, Fan Q F, Zou H T. Effects of corn straw concentrated deep returning on soil CO2emission in dry land. Soils, 2024, 56: 1027-1033 (in Chinese with English abstract).
[5] 樊芳芳, 焦晓燕, 刘佳琪, 郭珺, 王劲松, 武爱莲, 白文斌, 平俊爱. 高粱、玉米残体的腐解特征及微生物群落结构分析. 华北农学报, 2022, 37(1): 147-157.
doi: 10.7668/hbnxb.20192567
Fan F F, Jiao X Y, Liu J Q, Guo J, Wang J S, Wu A L, Bai W B, Ping J A. Analysis on the decomposition characteristics and microbial community structure of sorghum and maize residues. Acta Agric Boreali-Sin, 2022, 37(1): 147-157 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20192567
[6] Xue K, Serohijos R C, Devare M, Thies J E. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field. Appl Environ Microbiol, 2011, 77: 839-846.
[7] 蔡丽君, 赵桂范, 刘婧琦, 盖志佳, 杜佳兴, 郭震华, 张敬涛. 玉米不同部位秸秆腐解特征及其影响因素研究. 玉米科学, 2019, 27(2): 113-119.
Cai L J, Zhao G F, Liu J Q, Gai Z J, Du J X, Guo Z H, Zhang J T. Study on maize straw decomposition characteristics and influencing factors. J Maize Sci, 2019, 27(2): 113-119 (in Chinese with English abstract).
[8] 张倩, 张红. 秸秆腐解过程中土壤热值与有机养分动态. 西北农业学报, 2019, 28: 1158-1168.
Zhang Q, Zhang H. Dynamics of soil thermal analysis and organic nutrients during straw decomposition. Acta Agric Boreali-Occident Sin, 2019, 28: 1158-1168 (in Chinese with English abstract).
[9] 肖金宝, 白延倩, 杨宝平, 贾志宽, 韩清芳, 刘铁宁. 秸秆腐解与养分释放特征对腐熟剂用量的响应. 中国土壤与肥料, 2023, (9): 181-191.
Xiao J B, Bai Y Q, Yang B P, Jia Z K, Han Q F, Liu T N. Response of straw decomposition and nutrient release characteristics to the amount of decomposition agent. Soil Fert Sci China, 2023, (9): 181-191 (in Chinese with English abstract).
[10] Liu L, Qian C, Jiang L, Yu H Q. Direct three-dimensional characterization and multiscale visualization of wheat straw deconstruction by white rot fungus. Environ Sci Technol, 2014, 48: 9819-9825.
[11] Wang H N, Nabi F, Sajid S, Kama R, Shah S M M, Wang X C. Optimizing nitrogen fertilization for enhanced rice straw degradation and oilseed rape yield in challenging winter conditions: insights from southwest China. Sustainability, 2024, 16: 5580.
[12] Huang Y Y, Yan Y Y, Ma Y, Zhang X, Zhao Q, Men M X, Huang Y L, Peng Z P. The effect of low-temperature straw-degrading microbes on winter wheat growth and soil improvement under straw return. Front Microbiol, 2024, 15: 1391632.
[13] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 79-172, 304-331.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 79-172, 304-331 (in Chinese).
[14] 仇美华, 朱乾, 范新会, 梁永红, 马艳, 罗佳. 高温条件下土壤持水率对辣椒秸秆还田腐解效果及土壤性状的影响. 北方园艺, 2024, (5): 82-89.
Qiu M H, Zhu Q, Fan X H, Liang Y H, Ma Y, Luo J. Effects of soil moisture on decomposition of pepper straw and soil properties at high temperature. North Hortic, 2024, (5): 82-89 (in Chinese with English abstract).
[15] 刘熙明, 袁静超, 梁尧, 刘剑钊, 任军, 高强, 冯国忠, 蔡红光. 还田方式对玉米秸秆腐解特征及其节肥潜力的影响. 农业资源与环境学报, 2025, 42: 404-411.
Liu X M, Yuan J C, Liang Y, Liu J Z, Ren J, Gao Q, Feng G Z, Cai H G. Effects of returning method on decomposition characteristics of corn straw and its fertilizer-saving potential. J Agric Resour Environ, 2025, 42: 404-411 (in Chinese with English abstract).
[16] McGuire K L, Treseder K K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem, 2010, 42: 529-535.
[17] 李旭业, 尤海洋, 董扬, 郭文凯, 李莉, 王佳, 郭春晖, 王蕊, 张军. 黑龙江省西部地区鲜食玉米秸秆绿肥还田腐解规律研究. 现代畜牧科技, 2024, (5): 75-79.
Li X Y, You H Y, Dong Y, Guo W K, Li L, Wang J, Guo C H, Wang R, Zhang J. Study on the decomposition of fresh corn straw treated with green manure in western region, Heilongjiang. Mod Anim Husb Sci Technol, 2024, (5): 75-79 (in Chinese with English abstract).
[18] 陈丽鹃, 张锦秀, 范伟, 粟桂蓉, 李伟鹏, 谢慧玲, 李雨, 周喜新. 红外光谱结合热重法对3种作物秸秆腐解特征的分析. 南方农业学报, 2024, 55: 2591-2601.
Chen L J, Zhang J X, Fan W, Su G R, Li W P, Xie H L, Li Y, Zhou X X. Decomposition characteristics of 3 crop straws based on the infrared spectroscopy combined with thermogravimetry. J South Agric, 2024, 55: 2591-2601 (in Chinese with English abstract).
[19] 彭成林, 徐大兵, 周勇, 佀国涵, 赵书军, 刘威, 周剑雄. 小龙虾扰动下水稻秸秆腐解及养分释放和表面结构变化特征. 华中农业大学学报, 2024, 43(3): 214-219.
Peng C L, Xu D B, Zhou Y, Si G H, Zhao S J, Liu W, Zhou J X. Characteristics of straw decomposition, nutrient release and structural changes of rice under disturbance from crayfish. J Huazhong Agric Univ, 2024, 43(3): 214-219 (in Chinese with English abstract).
[20] 武际, 郭熙盛, 王允青, 许征宇, 鲁剑巍. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征. 中国农业科学, 2011, 44: 3351-3360.
doi: 10.3864/j.issn.0578-1752.2011.16.007
Wu J, Guo X S, Wang Y Q, Xu Z Y, Lu J W. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models. Sci Agric Sin, 2011, 44: 3351-3360 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.16.007
[21] Liu X D, Huo H R, Zhang Y H, Yang H W, Li S M, Meng L B. Promotion of maize straw degradation rate by altering microbial community structure through the addition of soybean straw. Plant Soil, 2024, 2024: 1-21.
[22] 陈开骥, 周柳强, 彭嘉宇, 雷秋良, 沈小微, 刘昔辉, 唐新莲, 区惠平. 不同还田方式下芒果修剪枝叶腐解以及养分释放特征. 江苏农业科学, 2024, 52(10): 241-247.
Chen K J, Zhou L Q, Peng J Y, Lei Q L, Shen X W, Liu X H, Tang X L, Qu H P. Decomposition and nutrient release characteristics of mango pruned branches and leaves under different returning methods. Jiangsu Agric Sci, 2024, 52(10): 241-247 (in Chinese with English abstract).
[23] 周远平, 罗文娇, 周平, 王琼, 郭华春. 马铃薯茎叶还田对土壤理化性质及细菌群落结构的影响. 西南农业学报, 2024, 37(1): 145-153.
Zhou Y P, Luo W J, Zhou P, Wang Q, Guo H C. Effects of potato leaf and stem returning on soil bacterial community and physiochemical properties. Southwest China J Agric Sci, 2024, 37(1): 145-153 (in Chinese with English abstract).
[24] 胡凯, 李倩, 张中发, 王微. 凋落物分解酶的研究进展. 北方园艺, 2021, (13): 134-140.
Hu K, Li Q, Zhang Z F, Wang W. Research progress of litter decomposition enzyme. North Hortic, 2021, (13): 134-140 (in Chinese with English abstract).
[25] Tahat M M, Alananbeh K M, Othman Y A, Leskovar D I. Soil health and sustainable agriculture. Sustainability, 2020, 12: 4859.
[26] Wu L P, Ma H, Zhao Q L, Zhang S R, Wei W L, Ding X D. Changes in soil bacterial community and enzyme activity under five years straw returning in paddy soil. Eur J Soil Biol, 2020, 100: 103215.
[27] Wang S R, Hu S W, Dong Z H, Li J F, Zhao J, Nazar M, Ali Kaka N, Shao T. The contribution of epiphytic microbiota in oat and Italian ryegrass to silage fermentation products and bacterial community structure of whole-crop maize. Chem Biol Technol Agric, 2023, 10: 62.
[28] 王秀红, 李欣欣, 史向远, 周静, 王保平, 杜慧平, 籍增顺. 玉米秸秆不同发酵时期理化性状和细菌群落多样性. 华北农学报, 2018, 33(3): 144-152.
doi: 10.7668/hbnxb.2018.03.022
Wang X H, Li X X, Shi X Y, Zhou J, Wang B P, Du H P, Ji Z S. Physicochemical properties and bacterial community diversity during different fermentation periods of corn straw. Acta Agric Boreali-Sin, 2018, 33(3): 144-152 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2018.03.022
[29] 段曼莉, 徐洪波, 覃振伦, 吴双, 陈浩楠, 王全九, 周蓓蓓. 磁化水复合保氮剂对堆肥过程中氮素损失和微生物群落的影响. 农业工程学报, 2024, 40(12): 202-212.
Duan M L, Xu H B, Qin Z L, Wu S, Chen H N, Wang Q J, Zhou B B. Effects of magnetized water combined with nitrogen-preserving agents on nitrogen loss and microbial communities during composting. Trans CSAE, 2024, 40(12): 202-212 (in Chinese with English abstract).
[30] Zhang C F, van der Heijden M G A, Dodds B K, Nguyen T B, Spooren J, Valzano-Held A, Cosme M, Berendsen R L. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome, 2024, 12: 13.
doi: 10.1186/s40168-023-01726-4 pmid: 38243337
[31] 苏鑫, 王敬红, 张方政, 刘嘉乐, 巩光禄, 欧阳晓伦, 魏丹, 赵洪颜, 宋福强, 晏磊, 等. 复合菌系降解玉米秸秆过程中群落演替与秸秆降解的关系. 微生物学报, 2020, 60: 2675-2689.
Su X, Wang J H, Zhang F Z, Liu L L, Gong G L, Ou-Yang X L, Wei D, Zhao H Y, Song F Q, Yan L, et al. Microbial community succession associated with corn straw degradation in a bacterium consortium. Acta Microbiol Sin, 2020, 60: 2675-2689 (in Chinese with English abstract).
[32] 汪洁, 黎尔彤, 田方圆, 金小宝, 刘文彬. 戈登氏菌属放线菌的研究进展. 微生物学报, 2023, 63: 494-508.
Wang J, Li E T, Tian F Y, Jin X B, Liu W B. Recent advances on Gordonia. Acta Microbiol Sin, 2023, 63: 494-508 (in Chinese with English abstract).
[33] 胡湘云, 邓素媛, 庞天德, 丘金花, 覃倩, 易显凤, 曹艳红, 姚娜. 茉莉花渣和象草对山羊瘤胃微生物菌群的影响. 饲料工业, 2025, 46(17): 42-49.
Hu X Y, Deng S Y, Pang T D, Qiu J H, Tan Q, Yi X F, Cao Y H, Tao N. Effects of jasmine residue and elephant grass on rumen microbiota in goats. Feed Industry, 2025, 46(17): 42-49 (in Chinese with English abstract).
[34] Zhang X, Borjigin Q, Gao J L, Yu X F, Zhang B Z, Hu S P, Han S C, Liu R Z, Zhang S N. Community succession and straw degradation characteristics using a microbial decomposer at low temperature. PLoS One, 2022, 17: e0270162.
[35] Gu Y F, Wang Y Y, Lu S E, Xiang Q J, Yu X M, Zhao K, Zou L K, Chen Q, Tu S H, Zhang X P. Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil. Front Microbiol, 2017, 8: 1516.
doi: 10.3389/fmicb.2017.01516 pmid: 28861048
[36] Abdulla H M, El-Shatoury S A. Actinomycetes in rice straw decomposition. Waste Manag, 2007, 27: 850-853.
[37] Borjigin Q, Yu X F, Gao J L, Zhang B Z, Wang Z G, Hu S P, Han S C, Sun J Y, Hu W J. Taxonomic structure and function of the corn stover degradative microbial consortium GF-20 following growth on different sources of nitrogen. Ann Appl Biol, 2022, 180: 236-246.
[38] Zhang Q L, Li X J, Chen G S, Luo N N, Sun J, Ngozi E A, Lu X R. The residue chemistry transformation linked to the fungi keystone taxa during different residue tissues incorporation into mollisols in Northeast China. Agriculture, 2024, 14: 792.
[39] 吕开源, 周立萍, 康建宏, 吴宏亮, 贾彪, 班文慧, 蔡启明. 不同耕作方式下玉米秸秆还田对土壤真菌群落的影响. 中国土壤与肥料, 2022, (8): 112-122.
Lyu K Y, Zhou L P, Kang J H, Wu H L, Jia B, Ban W H, Cai Q M. Effects of maize straw returning on soil fungal community under different tillage methods. Soil Fert Sci China, 2022, (8): 112-122 (in Chinese with English abstract).
[40] 刘思远, 申东晨, 刘峥, 鲁丽颖, 徐恒, 董爱荣. 不同水曲柳褐斑病病级叶片的微生物多样性. 森林工程, 2024, 40(1): 1-8.
Liu S Y, Shen D C, Liu Z, Lu L Y, Xu H, Dong A R. Microbial diversity in leaves of different Fraxinus mandshurica brown spot disease stages. For Eng, 2024, 40(1): 1-8 (in Chinese with English abstract).
[41] Sun M L, Shi C H, Huang Y, Wang H C, Li J J, Cai L T, Luo F, Xiang L G, Wang F. Effect of disease severity on the structure and diversity of the phyllosphere microbial community in tobacco. Front Microbiol, 2023, 13: 1081576.
[42] Bastian F, Bouziri L, Nicolardot B, Ranjard L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem, 2009, 41: 262-275.
[43] Hussien A, Hussein N, El-Nagdy M. Biodiversity of Chaetomium-like genera in the Nile River, at Assiut, Egypt. Assiut Univ J Multidiscip Sci Res, 2023, 52: 295-321.
[44] 焦有宙, 高赞, 李刚, 李鹏飞, 李攀攀. 不同土著菌及其复合菌对玉米秸秆降解的影响. 农业工程学报, 2015, 31(23): 201-207.
Jiao Y Z, Gao Z, Li G, Li P F, Li P P. Effect of different indigenous microorganisms and its composite microbes on degradation of corn straw. Trans CSAE, 2015, 31(23): 201-207 (in Chinese with English abstract).
[45] Wang X X, Zhang W, Zhou F, Liu Y, He H B, Zhang X D. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol Biochem, 2020, 142: 107723.
[46] 吕付泽, 杨雅丽, 鲍雪莲, 张常仁, 郑甜甜, 何红波, 张旭东, 解宏图. 免耕不同秸秆覆盖量对黑土微生物群落及其残留物的影响. 应用生态学报, 2023, 34: 903-912.
doi: 10.13287/j.1001-9332.202304.033
Lyu F Z, Yang Y L, Bao X L, Zhang C R, Zheng T T, He H B, Zhang X D, Xie H T. Effects of no-tillage and different stover mulching amounts on soil microbial community and microbial residue in the Mollisols of China. Chin J Appl Ecol, 2023, 34: 903-912 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202304.033
[47] 王莉杰, 张鑫, 赵文山, 刘瑞枝, 于晓芳, 高聚林, 青格尔. 低温秸秆降解复合菌系的功能及组成稳定性. 微生物学通报, 2024, 51: 4464-4484.
Wang L J, Zhang X, Zhao W S, Liu R Z, Yu X F, Gao J L, Qing G E. Functions and composition stability of straw-degrading microbial consortia under low temperatures. Microbiol China, 2024, 51: 4464-4484 (in Chinese with English abstract).
[1] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!