欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3352-3363.doi: 10.3724/SP.J.1006.2023.31007

• 耕作栽培·生理生化 • 上一篇    下一篇

1960—2020年新疆主要作物需水量时空特征分析

何旭刚(), 买买提·沙吾提*(), 夏梓洋, 师君银, 贺小宁, 盛艳芳, 李荣鹏   

  1. 新疆大学地理与遥感科学学院 / 新疆绿洲生态教育部重点实验室 / 新疆智慧城市与环境建模自治区普通高校重点实验室, 新疆乌鲁木齐 830017
  • 收稿日期:2023-01-30 接受日期:2023-06-29 出版日期:2023-12-12 网络出版日期:2023-07-13
  • 通讯作者: * 买买提·沙吾提, E-mail: korxat@xju.edu.cn
  • 作者简介:E-mail: hexugang@stu.xju.edu.cn
  • 基金资助:
    新疆自然科学计划(自然科学基金)联合基金项目(2021D01C055)

Spatio-temporal characteristics of water requirement of main crops in Xinjiang from 1960 to 2020

HE Xu-Gang(), MAMAT Sawut*(), XIA Zi-Yang, SHI Jun-Yin, HE Xiao-Ning, SHENG Yan-Fang, LI Rong-Peng   

  1. College of Geography and Remote Sensing Sciences, Xinjiang University / Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University / Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, Xinjiang, China
  • Received:2023-01-30 Accepted:2023-06-29 Published:2023-12-12 Published online:2023-07-13
  • Contact: * E-mail: korxat@xju.edu.cn
  • Supported by:
    Xinjiang Natural Science Program (Natural Science Foundation) Joint Fund Project(2021D01C055)

摘要:

作物需水量和作物灌溉需水量的时空分析对水资源优化配置和灌溉制度制定至关重要。为了解新疆主要作物棉花、春小麦、冬小麦和玉米生育期需水量和灌溉需水量的时空特征及影响因素, 本文基于1960—2020年逐日气象观测数据, 采用Penman-Monteith公式和单作物系数法, 利用去趋势预置白(TFPW)的Mann-Kendall (TFPW-MK)研究4种作物需水量变化特征, 并通过重标极差(R/S)分析法预测未来作物需水量和灌溉需水量的时空演变趋势; 运用随机森林模型的重要协变量特征识别原理, 分析气象因素与作物需水量的重要性排名, 探究了作物需水量的变化成因。结果表明: 1) 61年来, 新疆主要作物需水量总体呈现“先增后减又增”的变化趋势; 作物需水量和灌溉需水量从大到小均依次为: 棉花>玉米>冬小麦>春小麦; 空间上呈现“南疆>北疆、东南>西北、东部>西部”的格局; 主要作物需水量变化范围为: 棉花为381.20~991.20 mm (均值为654.94 mm), 玉米为350.26~924.48 mm (均值为607.98 mm), 春小麦为361.96~709.69 mm (均值为464.89 mm), 冬小麦为266.47~753.62 mm (均值为495.7 0 mm); 灌溉需水量变化范围为: 棉花为49.49~975.88 mm (均值为563.19 mm), 玉米为52.47~910.85 mm (均值为530.18 mm), 春小麦为42.58~701.29mm (均值为409.28 mm), 冬小麦为21.94~741.77 mm (均值为418.26 mm), 自80年代中后期开始, 灌溉需水量下降幅度大于需水量。2) TFPW-MK分析中, 近61年来, 分布在塔里木盆地北部边缘的沙雅和阿克苏、东疆的巴里坤等12个站点需水量呈上升趋势; 分布在塔里木盆地中部的塔中、北疆的克拉玛依和南疆的阿图什等区域的27个站点需水量逐步降低; 其余站点呈上下波动。3) 使用R/S方法对未来需水量的预测中, 北疆的塔城、托里、富蕴和乌鲁木齐站, 东疆的巴里坤, 南疆的沙雅、乌恰、塔中、且末和柯坪等站点4种作物需水量和灌溉需水量在未来会减少, 而东疆的红柳河、巴里坤与巴音布鲁克的春、冬小麦需水量在未来呈现上升趋势。4) 在作物全育期中, 风速和气温是新疆主要作物需水量的最重要影响因素, 而降水对新疆主要作物需水量的重要性最小。该研究较为全面的为新疆农业高效用水和灌溉措施的制定提供决策和依据。

关键词: 新疆农作物, 需水量, TFPW-MK法, R/S分析法, 随机森林

Abstract:

Spatio-temporal analysis of crop water requirement and crop irrigation water requirement is crucial to the optimal allocation of water resources and the formulation of irrigation systems. The objective of this study is to understand the spatio-temporal characteristics and influencing factors of the water requirement during the growth period and irrigation water requirement of the main crops in Xinjiang, cotton, spring wheat, winter wheat, and corn. Based on the daily meteorological observation data from 1960 to 2020, the Penman-Monteith formula and the single crop coefficient method were adopted in this study, and Mann-Kendall (TFPW-MK) of Detrended Preset White (TFPW) was used to study the changing characteristics of water requirement of four crops. The temporal and spatial evolution trend of crop water requirement and irrigation water requirement were predicted by rescaled range (R/S) analysis. Using the principle of important covariate feature identification of the random forest model, the importance ranking of meteorological factors and crop water requirement was analyzed, and the causes of changes in crop water requirement were explored. The results show that: 1) the water requirement of major crops in Xinjiang had generally shown a trend of “increase first, then decrease and then increase” for 61 year. The order of crop water demand and irrigation water requirement from large to small was: cotton > corn > winter wheat > spring wheat. In terms of space, there was a spatial distribution of “Southern Xinjiang>Northern Xinjiang, Southeast>Northwest, East>Western”. The variation range of water requirement for major crops was: cotton 381.20-991.20 mm (mean 654.94 mm), corn 350.26-924.48 mm (mean 607.98 mm), spring wheat 361.96-709.69 mm (average 464.89 mm), winter wheat 266.47-753.62 mm (average 495.7 0 mm). The range of irrigation water requirement was: cotton 49.49-975.88 mm (average 563.19 mm), corn 52.47-910.85 mm (average 530.18 mm), spring wheat 42.58-701.29 mm (average 409.28 mm), winter wheat 21.94-741.77 mm (average 418.26 mm). Since the middle and late 1980s, irrigation water requirement decreased more than water requirement. 2) According to the TFPW-MK analysis, in the past 61 years, the water requirement of 12 stations mainly distributed in the northern edge of the Tarim Basin, including Shaya and Aksu, and Baekol in the eastern Xinjiang, showed an upward trend. The water requirement of 27 stations in Karamay in Xinjiang and Artux in southern Xinjiang gradually decreased; the rest of the stations fluctuated up and down. 3) In the prediction of future water demand using the R/S method, four crop water demand and irrigation water demand at Tacheng, Toli, Fuyun and Urumqi stations in northern Xinjiang, Baekol in eastern Xinjiang, and Shaya, Wuqia, Tazhong, Qiemo and Kalpin stations in southern Xinjiang will decrease in the future, while spring and winter wheat water demand at Hongliuhe, Baekol and Bayanbulak in eastern Xinjiang will show an increasing trend in the future. 4) During the crop growth period, wind speed and temperature were the most important factors affecting the water requirement of major crops in Xinjiang, while precipitation was the least important factor for the water requirement of major crops in Xinjiang. This research comprehensively provides decision-making and basis for the formulation of high-efficiency agricultural water use and irrigation measures in Xinjiang.

Key words: crops in Xinjiang, water requirement, TFPW-MK method, R/S analysis method, random forest

图1

研究区概况图 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS (2019) 1822号的标准地图制作, 底图边界无修改。"

表1

新疆不同作物逐月作物系数"

作物
Crops
月份Month 均值Mean
Jan. Feb. Mar. April May June July Aug. Sep. Oct. Nov. Dec.
棉花Cotton / / / 0.27 0.55 0.69 1.05 1.13 0.50 0.28 / / 0.64
春小麦Spring wheat / / 0.27 0.50 1.06 0.65 0.14 / / / / / 0.53
冬小麦Winter wheat 0.29 0.32 0.66 0.84 1.02 0.24 0.13 / 0.30 0.30 0.29 0.29 0.43
玉米Maize / / / 0.23 0.46 0.78 1.13 0.51 0.32 / / / 0.57

图2

4种作物生育期多年平均需水量、灌溉需水量与有效降水量 a~d: 棉花、玉米、春小麦和冬小麦需水量; a′~d′: 棉花、玉米、春小麦和冬小麦灌溉需水量; a′′~d′′: 分别为棉花、玉米、春小麦和冬小麦有效降水量(mm)。"

图3

4种作物有效降水量/需水量/灌溉需水量多年变化趋势"

图4

TFPW-MK趋势检验法Z统计值"

图5

R/S方法4种作物需水量与灌溉需水量预测的H指数分布 a~d: 棉花、玉米、春小麦和冬小麦需水量预测; a′~d′: 棉花、玉米、春小麦和冬小麦灌溉需水量预测。"

图6

气象因子重要性评价 RHU: 相对湿度; SSD: 日照时数; TEM: 气温; WIN: 风速; PRE: 降水; Rn: 净辐射。"

[1] 康绍忠, 孙景生, 张喜英, 佟玲, 王景雷, 李思恩. 中国北方主要作物需水量与耗水管理. 北京: 中国水利水电出版社, 2018. pp 1-2.
Kang S Z, Sun J S, Zhang X Y, Tong L, Wang J L, Li S E. Water Demand and Consumption Management of Major Crops in North China. Beijing: China Water Resources and Hydropower Press, 2018. pp 1-2. (in Chinese)
[2] Tan Q H, Liu Y J, Pan T, Song X F, Li X Y. Changes and determining factors of crop evapotranspiration derived from satellite-based dual crop coefficients in North China Plain. Crop J, 2022, 10: 1496-1506.
doi: 10.1016/j.cj.2022.07.013
[3] Yang X L, Jin X N, Chu Q Q, Pacenka S, Steenhuis T S. Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain. Agric Water Manag, 2021, 243: 106502.
doi: 10.1016/j.agwat.2020.106502
[4] 王梅, 杨倩, 郑江华, 刘志辉. 1963-2012年新疆棉花需水量时空分布特征. 生态学报, 2016, 36: 4122-4130.
Wang M, Yang Q, Zheng J H, Liu Z H. Spatial and temporal distribution of water requirement of cotton in Xinjiang from 1963 to 2012. Acta Ecol Sin, 2016, 36: 4122-4130. (in Chinese with English abstract)
[5] 轩俊伟, 郑江华, 刘志辉. 近50年新疆小麦需水量时空特征及气候影响因素分析. 水土保持研究, 2015, 22(4): 155-160.
Xuan J W, Zheng J H, Liu Z H. Spatiotemporal characteristics of water requirement of wheat as influenced by climate in Xinjiang in recent 50 years. Res Soil Water Conserv, 2015, 22(4): 155-160. (in Chinese with English abstract)
[6] 商蒙非, 赵炯超, 韩桐, 李硕, 王凯澄, 高真真, 秦雨酥, 褚庆全. 1961-2020年中国玉米需水量及水分盈亏的时空变化格局. 中国农业大学学报, 2022, 27(4): 22-30.
Shang M F, Zhao J C, Han T, Li S, Wang K C, Gao Z Z, Qin Y S, Chu Q Q. Temporal and spatial variation of maize water requirement and water surplus and deficit in China from 1961 to 2020. J China Agric Univ, 2022, 27(4): 22-30. (in Chinese with English abstract)
[7] 刘小刚, 符娜, 李闯, 王露, 杨启良. 河南省主粮作物需水量变化趋势与成因分析. 农业机械学报, 2015, 46(9): 188-197.
Liu X G, Fu N, Li C, Wang L, Yang Q L. Trends and causes analysis of water requirement for main grain crops in Henan province. Trans CSAM, 2015, 46(9): 188-197. (in Chinese with English abstract)
[8] Zhang P, Ma W D, Hou L, Liu F S, Zhang Q. Study on the spatial and temporal distribution of irrigation water requirements for major crops in Shandong province. Water, 2022, 14: 1051.
doi: 10.3390/w14071051
[9] 祁嘉郁, 巴特尔·巴克, 卡力比尔·买买提. 北疆春小麦不同生育阶段需水量变化的气候响应. 麦类作物学报, 2021, 41: 362-369.
Qi J Y, Bake B, Mamat K. Climate response of water demand variation in spring wheat at different growth stages in Northern Xinjiang. J Triticeae Crops, 2021, 41: 362-369. (in Chinese with English abstract)
[10] 卡力比尔·买买提, 巴特尔·巴克, 祁嘉郁. 北疆地区棉花生育期需水量变化特征及成因分析. 节水灌溉, 2021, (1): 81-85.
Mamat K, Bake B, Qi J Y. Variation Characteristic of water requirement during cotton growing period and its cause in Northern Xinjiang. Water Sav Irrig, 2021, (1): 81-85. (in Chinese with English abstract)
[11] 任修琳, 李宏亮, 张玉虎, 蒲晓, 张立林. 2000-2015年三江平原主要作物需水量特征及影响因素分析. 干旱区地理, 2019, 42: 854-866.
Ren X L, Li H L, Zhang Y H, Pu X, Zhang L L. Water requirement characteristics and influencing factors of main crops in the Sanjiang Plain from 2000 to 2015. Arid Land Geogr, 2019, 42: 854-866. (in Chinese with English abstract)
[12] 邢贞相, 喻熠, 李凤昱, 王丽娟, 付强, 王红利. 建三江主要作物需水量变化趋势与关键影响因子识别. 农业机械学报, 2022, 53: 308-315.
Xing Z X, Yu Y, Li F Y, Wang L J, Fu Q, Wang H L. The change trend and key influencing factors identification of the main crops water demand in Jiansanjiang. Trans CSAM, 2022, 53: 308-315. (in Chinese with English abstract)
[13] 刘钰, 汪林, 倪广恒, 丛振涛. 中国主要作物灌溉需水量空间分布特征. 农业工程学报, 2009, 25(12): 6-12.
Liu Y, Wang L, Ni G H, Cong Z T. Spatial distribution characteristics of irrigation water requirement for main crops in China. Trans CSAE, 2009, 25(12): 6-12. (in Chinese with English abstract)
[14] Wang F, Chen Y N, Li Z, Fang G H, Li Y P, Xia Z H. Assessment of the irrigation water requirement and water supply risk in the Tarim River Basin, Northwest China. Sustainability, 2019, 11: 4941.
doi: 10.3390/su11184941
[15] Guo B, Li W H, Guo J Y, Chen C F. Risk assessment of regional irrigation water demand and supply in an arid inland river basin of northwestern China. Sustainability, 2015, 7: 12958-12973.
doi: 10.3390/su70912958
[16] Xu C C, Zhang X C, Zhang J X, Chen Y P, Yami T L, Yang H. Estimation of crop water requirement based on planting structure extraction from Multi-Temporal MODIS EVI. Water Resour Manag, 2021, 35: 2231-2247.
doi: 10.1007/s11269-021-02838-y
[17] Winter J M, Lopez J R, Ruane A C, Young C A, Scanlon B R, Rosenzweig C. Representing water scarcity in future agricultural assessments. Anthropocene, 2017, 18: 15-26.
doi: 10.1016/j.ancene.2017.05.002
[18] 吕娜娜, 白洁, 常存, 李均力, 罗格平, 吴世新, 丁建丽. 近50年基于农作物种植结构的新疆绿洲农田蒸散发时空变化分析. 地理研究, 2017, 36: 1443-1454.
doi: 10.11821/dlyj201708004
Lyu N N, Bai J, Chang C, Li J L, Luo G P, Wu S X, Ding J L. Spatial-temporal changes in evapotranspiration based on planting patterns of major crops in the Xinjiang oasis during 1960-2010. Geogr Res, 2017, 36: 1443-1454 (in Chinese with English abstract).
doi: 10.11821/dlyj201708004
[19] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析. 作物学报, 2021, 47: 2450-2458.
doi: 10.3724/SP.J.1006.2021.01086
Shi M X, Zhang J X, Shi X Y, Chu Q Q, Chen F, Lei Y D. Water use efficiency of several water-intensive crops in Hebei province in recent 20 years. Acta Agron Sin, 2021, 47: 2450-2458. (in Chinese with English abstract)
[20] Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig Drain, 1998, 56: 65-69.
[21] 段爱旺, 孙景生, 刘钰, 肖俊夫, 刘群昌, 齐学斌. 北方地区主要农作物灌溉用水定额. 北京: 中国农业科学技术出版社, 2004. pp 52-60.
Duan A W. Sun J S, Liu Y, Xiao J F, Liu Q C, Qi X B. Irrigation Water Quota of Main Crops in Northern China. Beijing: China Agricultural Science and Technology Press, 2004. pp 52-60. (in Chinese)
[22] Geng Q L, Zhao Y K, Sun S K, He X H, Wang D, Wu D R, Tian Z H. Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China. Agric Water Manag, 2023, 280: 108218.
doi: 10.1016/j.agwat.2023.108218
[23] 章诞武, 丛振涛, 倪广恒. 基于中国气象资料的趋势检验方法对比分析. 水科学进展, 2013, 24: 490-496.
Zhang D W, Cong Z T, Ni G H. Comparison of three Mann- Kendall methods based on the China’s meteorological data. Adv Water Sci, 2013, 24: 490-496. (in Chinese with English abstract)
[24] Huang F, Qian B, Ochoa C G. Long-term river water temperature reconstruction and investigation: a case study of the Dongting Lake Basin, China. J Hydrol, 2023, 616: 128857.
doi: 10.1016/j.jhydrol.2022.128857
[25] 张静. 干旱环境遥感监测方法的适用性及在西北干旱区的应用. 西北师范大学硕士学位论文,甘肃兰州, 2021.
Zhang J. Applicability of Remote Sensing Monitoring Method for drought Environment and Its Application in Arid Area of Northwest China. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2021. (in Chinese with English abstract)
[26] Zhang X C, Chen L X, Zhou C. Deformation monitoring and trend analysis of reservoir bank landslides by combining time-series InSAR and hurst index. Remote Sens, 2023, 15: 619.
doi: 10.3390/rs15030619
[27] Liaw A, Wiener M. Classification and regression by random forest. R News, 2002, 2: 18-22.
[28] 李剑锋, 张强, 白云岗, 张江辉. 新疆地区最大连续降水事件时空变化特征. 地理学报, 2012, 67: 312-320.
doi: 10.11821/xb201203003
Li J F, Zhang Q, Bai Y G, Zhang J H. Spatio-temporal Probability Behaviors of the Maximum Consecutive Wet Days in Xinjiang, China. Acta Geogr Sin, 2012, 67: 312-320. (in Chinese with English abstract)
doi: 10.11821/xb201203003
[29] 戴新刚, 汪萍, 张凯静. 近60年新疆降水趋势与波动机制分析. 物理学报, 2013, 62: 527-537.
Dai X G, Wang P, Zhang K J. study on precipitation trend and fluctuation mechanism in northwestern China over the past 60 years. Acta Phys Sin, 2013, 62: 527-537. (in Chinese with English abstract)
[30] 杨莲梅. 新疆极端降水的气候变化. 地理学报, 2003, 58: 577-583.
Yang L M. Climate change of extreme precipitation in Xinjiang. Acta Geogr Sin, 2003, 58: 577-583 (in Chinese with English abstract).
doi: 10.11821/xb200304012
[31] 李剑锋, 张强, 陈晓宏, 白云岗. 新疆极端降水概率分布特征的时空演变规律. 灾害学, 2011, 26(2): 11-17.
Li J F, Zhang Q, Chen X H, Bai Y G. Spatial-temporal evolution pattern of probability distribution characteristics of extreme precipitation in Xinjiang Autonomous Region. J Catastrophol, 2011, 26(2): 11-17. (in Chinese with English abstract)
[32] 王小静. 西北旱区作物需水量对气候变化的响应. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Wang X J. The Response of Crop Water Reouirement to Climate Change in the Arid-region of Northwest China. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2014. (in Chinese with English abstract)
[33] 李亮. 气候变化条件下中国西北地区主要作物需水量时空演变及干旱指标研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2019.
Li L. Impact of Climate Change on Crop Water Requirement and Drought Indices in Northwest China. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2019. (in Chinese with English abstract)
[34] 吴燕锋, 巴特尔·巴克, 罗那那,Rasulov H. 石河子地区冬小麦生育期需水量变化特征及其气候成因. 水土保持通报, 2016, 36(1): 69-74.
Wu Y F, Bake B, Luo N N, Rasulov H. Variations in water requirement of winter wheat at different growth stages and its climatic cause in Shihezi region. Bull Soil Water Conserv, 2016, 36(1): 69-74. (in Chinese with English abstract)
[35] 董煜, 海米提·依米提. 1961-2013年新疆潜在蒸散量变化特征及趋势. 农业工程学报, 2015, 31(1): 153-161.
Dong Y, Haimiti Y. Spatio-temporal variability and trend of potential evapotranspiration in Xinjiang from 1961 to 2013. Trans CSAE, 2015, 31(1): 153-161. (in Chinese with English abstract)
[36] Han Y, Wang J L, Li P. Influences of landscape pattern evolution on regional crop water requirements in regions of large-scale agricultural operations. J Clean Prod, 2021, 327: 129499.
doi: 10.1016/j.jclepro.2021.129499
[37] Urban D W, Sheffield J, Lobell D B. Historical effects of CO2 and climate trends on global crop water demand. Nat Clim Chang, 2017, 7: 901-905.
doi: 10.1038/s41558-017-0011-y
[38] Tian J, Zhang Y Q. Detecting changes in irrigation water requirement in Central Asia under CO2 fertilization and land use changes. J Hydrol, 2020, 583: 124315.
doi: 10.1016/j.jhydrol.2019.124315
[1] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
[2] 依尔夏提•阿不来提,买买提•沙吾提,白灯莎•买买提艾力,安申群,马春玥. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1): 81-90.
[3] 王利民, 刘佳, 杨玲波, 杨福刚, 富长虹. 随机森林方法在玉米-大豆精细识别中的应用[J]. 作物学报, 2018, 44(04): 569-580.
[4] 何俊欧,凌霄霞,张建设,张萌,马迪,孙梦,刘永忠,展茗,赵明. 近35年湖北省低丘平原区玉米需水量及旱涝时空变化[J]. 作物学报, 2017, 43(10): 1536-1547.
[5] 薛昌颖;杨晓光;邓伟;张天一;闫伟兄;张秋平;肉孜阿基;赵俊芳;杨婕;Bouman B A M. 利用ORYZA2000模型分析北京地区旱稻产量潜力及需水特征[J]. 作物学报, 2007, 33(04): 625-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .