欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3342-3351.doi: 10.3724/SP.J.1006.2023.33003

• 耕作栽培·生理生化 • 上一篇    下一篇

增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响

王瑞1,2(), 李向岭1,*(), 郭栋3, 王新兵2, 马玮2, 李从锋2, 赵明2, 周宝元2,*()   

  1. 1河北科技师范学院农学与生物科技学院 / 河北省作物逆境生物学重点实验室, 河北秦皇岛 066004
    2中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点开放实验室, 北京100081
    3中国烟草总公司海南省公司海口雪茄研究所, 海南海口571100
  • 收稿日期:2023-01-10 接受日期:2023-06-29 出版日期:2023-12-12 网络出版日期:2023-07-21
  • 通讯作者: * 周宝元, E-mail: zhoubaoyuan@caas.cn; 李向岭, E-mail: ncqyfz2008@126.com
  • 作者简介:E-mail: wangrui10002022@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD2300803);中央级公益性科研院所基本科研业务费专项(S2022ZD05);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-12)

Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress

WANG Rui1,2(), LI Xiang-Ling1,*(), GUO Dong3, WANG Xin-Bing2, MA Wei2, LI Cong-Feng2, ZHAO Ming2, ZHOU Bao-Yuan2,*()   

  1. 1College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    3Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou 571100, Hainan, China
  • Received:2023-01-10 Accepted:2023-06-29 Published:2023-12-12 Published online:2023-07-21
  • Contact: * E-mail: zhoubaoyuan@caas.cn; E-mail: ncqyfz2008@126.com
  • Supported by:
    National Key Research and Development Program of China(2022YFD2300803);Central Public-interest Scientific Institution Basal Research Fund(S2022ZD05);China Agriculture Research System of MOF and MARA(CARS-02-12)

摘要:

花后高温是影响黄淮海夏玉米籽粒灌浆及产量形成的主要逆境胁迫之一。目前关于增施氮肥缓解灌浆期高温胁迫对小麦、玉米和水稻等作物产量形成的抑制作用已得到证实, 但相关调控途径及其生理机制尚不明确。本研究选用郑单958 (Zhengdan 958, ZD958)和先玉335 (Xianyu 335, XY335) 2个玉米品种为试验材料开展盆栽试验, 设置2个温度处理, 分别为自然环境温度(ambient temperature, CK)和温室增温处理(heat stress, HS); 3个施氮水平, 分别为低施氮量(low nitrogen application rate, LN): 120 kg hm-2, 中施氮量(middle nitrogen application rate, MN): 240 kg hm-2和高施氮量(high nitrogen application rate, HN): 360 kg hm-2, 研究增施氮肥对花后初期高温胁迫下玉米碳氮代谢的影响。结果表明, 与自然温度比, 花后增温(35℃)处理20 d导致ZD958和XY335两个品种的成熟期粒重降低10.6%~19.3%, 但粒重降幅随着施氮量增加而下降, 中施氮量(MN)和高施氮量(HN)下粒重降幅(10.6%~11.2%)小于低施氮量(LN)下粒重降幅(16.2%~19.3%), 说明增施氮肥可以显著提高花后高温胁迫下的玉米粒重。这主要是因为增施氮肥有效缓解了花后初期高温胁迫对玉米籽粒氮代谢的抑制作用, 显著提高了谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)等氮代谢关键酶活性, 同时维持了碳代谢关键酶蔗糖磷酸合成酶(SPS)和蔗糖合成酶(SS)活性, 促进了籽粒可溶性糖合成增加, 从而保证了较高的籽粒灌浆物质基础。综上所述, 增施氮肥可以缓解玉米花后初期高温胁迫对籽粒碳、氮代谢的抑制, 促进籽粒中同化物积累而增加粒重, 为黄淮海区夏玉米抗逆稳产栽培提供了思路。

关键词: 夏玉米, 高温胁迫, 增施氮肥, 碳氮代谢

Abstract:

Post-silking heat stress is one of the main stresses affecting grain filling and yield formation of summer maize in the Huang-Huai-Hai plains. At present, it has been confirmed that increasing nitrogen application can alleviate the inhibition of post-silking heat stress on the yield formation of wheat, maize, and rice, but the regulatory pathways and physiological mechanisms remain unclear. In this study, two maize varieties Zhengdan 958 (ZD958) and Xianyu 335 (XY335) were selected in pot experiment. To study the effects of increased nitrogen application on carbon and nitrogen metabolism of maize under heat stress during post-silking stage, two temperature treatments [ambient temperature (CK) and heat stress (HS)], three nitrogen application levels [low nitrogen application rate (LN): 120 kg hm-2, middle nitrogen application rate (MN): 240 kg hm-2, and high nitrogen application rate (HN): 360 kg hm-2] were set. The results showed that the dry weight of ZD958 and XY335 cultivars at maturity stage decreased by 10.6%-19.3% after 20 days of post-silking heat stress (35oC) compared with the ambient temperature. However, the decrease of kernel dry weight under heat stress was gradually decreased with the increase of nitrogen application rate, and the decrease rate (10.6%-11.2%) of kernel dry weight under medium nitrogen application rate (MN) and high nitrogen application rate (HN) was lower than that (16.2%-19.3%) under low nitrogen application rate (LN), which indicating that increased nitrogen application could significantly increase maize kernel dry weight under post-silking heat stress. This was mainly due to the increasing application of nitrogen effectively alleviated the inhibitory effect of early post-silking heat stress on maize grain nitrogen metabolism, and significantly increased the activities of key enzymes of nitrogen metabolism such as glutamine synthetase (GS) and glutamate synthetase (GOGAT). At the same time, the activities of sucrose phosphate synthetase (SPS) and sucrose synthetase (SS), which were key enzymes of carbon metabolism, were maintained, and the synthesis of soluble sugar in grains was increased, thus ensuring a larger amount of material for grain filling. In conclusion, increasing nitrogen application can alleviate the inhibition of post-silking heat stress on grain carbon and nitrogen metabolism and promote the accumulation of assimilates in grain and increase the kernel weight and yield, which provides a way for the resistant cultivation of summer maize in the Huang-Huai-Hai plains.

Key words: summer maize, heat stress, nitrogen application, carbon and nitrogen metabolism

表1

不同试验处理的每盆施肥量"

处理
Treatment
尿素 Urea 过磷酸钙
Superphosphate calcium
氯化钾
Potassium chloride
播种期
Sowing stage
拔节期
Jointing stage
开花期
Silking stage
低施氮量LN 7 4 3 40 11
中施氮量MN 14 9 6
高施氮量HN 21 13 9

图1

2022年玉米授粉后20 d内日气温变化"

表2

2021和2022年不同处理的夏玉米成熟期籽粒干重"

温度处理
Temperature
氮肥处理
N treatment
2021 2022
郑单958 ZD958 先玉335 XY335 郑单958 ZD958 先玉335 XY335
自然温度CK 低施氮量LN 276.3±3.58 c 286.8±3.72 b 283.1±3.24 c 292.3±3.28 b
中施氮量MN 305.5±3.89 a 312.7±4.06 a 309.2±3.55 ab 316.6±3.46 a
高施氮量HN 309.4±4.01 a 315.6±4.08 a 314.5±3.63 a 319.5±3.36 a
增温处理HS 低施氮量LN 231.7±3.17 d 230.9±3.17 d 237.2±2.89 d 236.2±2.78 d
中施氮量MN 257.6±3.45 c 255.8±3.45 c 262.3±3.12 c 259.3±3.05 c
高施氮量HN 276.5±3.81 b 280.5±3.68 b 281.4±3.34 b 283.5±3.34 b
变异来源 Source of variation
温度Temperature (T) 0.0286 0.0204 0.0114 0.0247
氮肥Nitrogen (N) 0.0343 0.0319 0.0275 0.0308
温度×氮肥 T×N 0.0212 0.0131 0.0058 0.0091

图2

2022年不同处理夏玉米籽粒可溶性糖含量 处理和品种同表2。不同小写字母表示处理间在0.05概率水平差异显著。"

图3

2022年不同处理夏玉米籽粒蛋白含量 处理和品种同表2。不同小写字母表示处理间在0.05概率水平差异显著。"

图4

2022年不同处理夏玉米籽粒蔗糖合酶活性 处理和品种同表2。不同小写字母表示处理间在0.05概率水平差异显著。"

图5

2022年不同处理夏玉米籽粒蔗糖磷酸合成酶活性 处理和品种同表2。不同小写字母表示处理间在0.05概率水平差异显著。"

图6

2022年不同处理夏玉米籽粒谷氨酰胺合成酶活性 处理和品种同表2。不同小写字母表示处理间在0.05概率水平差异显著。"

图7

2022年不同处理夏玉米籽粒谷氨酸合成酶活性 处理和品种同表2。不同小写字母表示处理间在0.05概率水平差异显著。"

[1] 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议, 农业经济问题, 2021, (7): 4-16.
Qiu H G, Li X H, Yu J L. China’s maize industry: development trends and policy suggestions. Issues Agric Ecol, 2021, (7): 4-16. (in Chinese with English abstract)
[2] Xiao D P, Qi Y Q, Shen Y J, Tao F L, Moiwo J P, Liu J F, Wang R D, Zhang H, Liu F S. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor Appl Clim, 2016, 124: 653-661.
doi: 10.1007/s00704-015-1450-x
[3] 和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41: 1-15.
doi: 10.3969/j.issn.1000-6362.2020.01.001
He J Y, Hu Q, Pan X B, Ma X Q, Hu L T, Wang X C, He Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change. Chin J Agroneteor, 2020, 41: 1-15. (in Chinese with English abstract)
[4] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[5] 侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16.
Hou X F, Wang Y Y, Huang S B, Dong X, Tao H B, Wang P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). J China Agric Univ, 2020, 25(3): 10-16. (in Chinese with English abstract)
[6] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
doi: 10.3864/j.issn.0578-1752.2020.19.009
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.009
[7] Lizaso J I, Ruiz-Ramos M, Rodríguez L, Gabaldon-Leal C, Oliveira J A, Lorite I J, Sánchez D, García E, Rodríguez A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res, 2018, 216: 129-140.
doi: 10.1016/j.fcr.2017.11.013
[8] Rattalino E J I, Mayer L I, Otegui M E. Heat stress in temperate and tropical maize hybrids: kernel growth, water relations and assimilate availability for grain filling. Field Crops Res, 2014, 166: 162-172.
doi: 10.1016/j.fcr.2014.06.018
[9] Rattalino E J I, Otegui M E. Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use. Field Crops Res, 2012, 130: 87-98.
doi: 10.1016/j.fcr.2012.02.009
[10] Cicchino M, Edreira J I R, Uribelarrea M, Otegui M E. Heat stress in field-grown maize: response of physiological determinants of grain yield. Crop Sci, 2010, 50: 1438-1448.
doi: 10.2135/cropsci2009.10.0574
[11] 王海堂, 张复君. 灌浆期高温胁迫对玉米籽粒灌浆及产量的影响. 热带农业科学, 2021, 41: 11-16.
Wang H T, Zhang F J. Effect of high temperature stress on maize grain filling and yield. Chin J Trop Agric, 2021, 41: 11-16. (in Chinese with English abstract)
[12] Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J Exp Bot, 2018, 69: 1599-1613.
doi: 10.1093/jxb/ery013 pmid: 29365129
[13] Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta, 2016, 243: 43-63.
doi: 10.1007/s00425-015-2394-1 pmid: 26335855
[14] Thussagunpanit J, Jutamanee K, Kaveeta L, Witith C A, Porn P, Sureeporn H, Apichart S. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul, 2015, 34: 320-331.
doi: 10.1007/s00344-014-9467-4
[15] Yan P, Chen Y Q, Dadouma A, Tao Z Q, Sui P. Effect of nitrogen regimes on narrowing the magnitude of maize yield penalty caused by high temperature stress in North China Plain. Plant Soil Environ, 2017, 64: 131-138.
[16] 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27: 591-602.
Duan H, Fu L, Ju C X, Liu L J, Yang J C. Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chin J Rice Sci, 2013, 27: 591-602. (in Chinese with English abstract)
[17] 缪乃耀, 唐设, 陈文珠, 李刚华, 刘正辉, 王绍华, 丁承强, 陈琳, 丁艳锋. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究. 南京农业大学学报, 2017, 40: 1-10.
Miao N Y, Tang S, Chen W S, Li G H, Liu Z H, Wang S H, Ding C Q, Chen L, Ding Y F. Research of nitrogen granular fertilizer alleviating high temperature stress at rice grain filling stage and its physiological mechanism. J Nanjing Agric Univ, 2017, 40: 1-10. (in Chinese with English abstract)
[18] 江文文, 尹燕枰, 王振林, 李勇, 杨卫兵, 彭佃亮, 杨东清, 崔正勇, 卢昆丽, 李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响. 作物学报, 2014, 40: 942-949.
doi: 10.3724/SP.J.1006.2014.00942
Jiang W W, Yin Y P, Wang Z L, Li Y, Yang W B, Peng Y L, Yang D Q, Cui Z Y, Lu K L, Li Y X. Effects of postponed application of nitrogen fertilizer on yield and physiological characteristics of flag leaf in wheat under post-anthesis heat stress. Acta Agron Sin, 2014, 40: 942-949. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00942
[19] 慕宇, 朱荣, 孙立影, 康建宏. 氮肥基追比对花后高温胁迫下春小麦淀粉形成的影响. 干旱地区农业研究, 2017, 35(5): 208-215.
Mu Y, Zhu R, Sun L Y, Kong J H. Effect of nitrogen dressing ratios and high temperature on the formation of starch after anthsis of spring wheat. Agric Res Arid Areas, 2017, 35(5): 208-215. (in Chinese with English abstract)
[20] 王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展. 广西植物, 2020, 40: 583-591.
Wang X L, Lyu X F. Research progress on mechanism of nitrogen metabolism involved in plant stress resistance. Guihaia, 2020, 40: 583-591. (in Chinese with English abstract)
[21] Meng S, Su L, Li Y, Wang Y J, Zhang C X, Zhao Z. Nitrate and ammonium contribute to the distinct nitrogen metabolism of populus simonii during moderate salt stress. PLoS One, 2016, 11: e0150354.
doi: 10.1371/journal.pone.0150354
[22] Chen J, Wang P, Ma Z M, Lyu X D, Liu T T, Siddique K H M. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Triticum aestivum L.) under permanent raised bed tillage in arid northwest China. Soil Tillage Res, 2018, 181: 117-126.
doi: 10.1016/j.still.2018.04.012
[23] AgamiR A, Alamri S A M, Abde-Mageed T A, Abousekken M S M, Hashem M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric Water Manag, 2018, 210: 261-270.
doi: 10.1016/j.agwat.2018.08.034
[24] Wang X L, Tang D Q. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. Plant Physiol Biochem, 2014, 75: 96-104.
doi: 10.1016/j.plaphy.2013.12.012
[25] Averina N G, Beyzaei Z, Shcherbakov R A, Usatov A V. Role of nitrogen metabolism in the development of salt tolerance in barley plants. Russ J Plant Physiol, 2014, 61: 97-104.
doi: 10.1134/S1021443713060022
[26] Khoshbakht D, Asghari M R, Haghighi M. Influence of foliar application of polyamines on growth, gas-exchange characteristics, and chlorophyll fluorescence in bakraii citrus under saline conditions. Photosynthetica, 2018, 56: 731-742.
doi: 10.1007/s11099-017-0723-2
[27] 张永平, 许爽, 杨少军, 陆世钧, 陈幼源. 外源亚精胺对低温胁迫下甜瓜幼苗生长和抗氧化系统的影响. 植物生理学报, 2017, 53: 1087-1096.
Zhang Y P, Xu S, Yang S J, Lu S J, Chen Y Y. Effect of exogenous spermidine on the growth and antioxidant system of melon seedlings under low temperature stress. Plant Physiol J, 2017, 53: 1087-1096. (in Chinese with English abstract)
[28] Xiong X, Chang L Y, Khalid M, Zhang J J, Huang D F. Alleviation of drought stress by nitrogen application in Brassica campestris. Chinensis L. Agronomy, 2018, 8: 66.
doi: 10.3390/agronomy8050066
[29] Zhong C, Cao X C, Hu J J, Zhu L F, Zhang J H, Huang J L, Jin Q Y. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 2017, 8: 1079.
doi: 10.3389/fpls.2017.01079 pmid: 28690622
[30] Liu Y H, Offler C E, Ruan Y L. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol, 2016, 172: 163-180.
doi: 10.1104/pp.16.00959
[31] Liang X G, Gao Z, Zhang L, Shen S, Zhao X, Liu Y P, Zhou L L, Paul M J, Zhou S L. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize. BMC Plant Biol, 2019, 19: 508.
doi: 10.1186/s12870-019-2068-4
[32] Ordóñez R A, Roxana S, Cossaniet C M, Slafer G A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Res, 2015, 183: 184-203.
doi: 10.1016/j.fcr.2015.07.010
[33] Yang M, Geng M Y, Shen P F, Chen X H, Li Y J, Wen X. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiol Bioch, 2019, 135: 304-309.
doi: 10.1016/j.plaphy.2018.12.025
[34] 周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39: 1826-1834.
doi: 10.3724/SP.J.1006.2013.01826
Zhou W X, Dong P F, Wang X P, Li C H. Effects of low light stress on kernel setting and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agron Sin, 2013, 39: 1826-1834. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01826
[35] Yuan L Y, Tang L, Zhu S D, Hou J F, Chen G H, Liu F, Liu S, Wang C G. Influence of heat stress on leaf morphology and nitrogen-carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Soc Bot Pol, 2017, 86: 3554.
[36] Wang J, Fu P X, Lu W P, Lu D L. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize. Crop J, 2020, 8: 1081-1092.
doi: 10.1016/j.cj.2019.11.007
[37] Del Castello F, Nejamkin A, Cassia R, Correa-Aragunde N, Fernández B, Foresi N, Lombardo C, Ramirez L, Lamattina L. The era of nitric oxide in plant biology. Twenty years tying up loose ends. Nitric Oxide, 2019, 85: 17-27.
doi: 10.1016/j.niox.2019.01.013
[38] 张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52: 34-44.
doi: 10.3864/j.issn.0578-1752.2019.01.004
Zhang X Y, Wang Y, Chen J, Chen A J, Wang L Y, Guo X Y, Niu Y L, Zhang X Y, Chen L D, Gao Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Sci Agric Sin, 2019, 52: 34-44. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.01.004
[39] 赵艺欣, 王岩, 刘轶欧, 曹莹, 赵天宏. 铵态氮肥施用量对春小麦氮代谢的影响. 贵州农业科学, 2012, 40(3): 51-54.
Zhao Y X, Wang Y, Liu Y O, Cao Y, Zhao T H. Effect of ammonium nitrogen fertilizer dosage on nitrogen metabolism of spring wheat. Guizhou Agric Sci, 2012, 40(3): 51-54. (in Chinese with English abstract)
[40] 张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析. 作物学报, 2018, 44: 197-207.
doi: 10.3724/SP.J.1006.2018.00197
Zhang L, Jian H J, Yang B, Zhang A X, Zhang C, Yang H, Zhang L Y, Liu L Z, Xu X F, Lu K, Li J N. Genome-wide Analysis and expression profiling of SPS gene family in Brassica nupus L. Acta Agron Sin, 2018, 44: 197-207 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00197
[41] 殷梦瑶, 陈功, 罗海华, 彭金剑, 高欣, 袁长凯, 汤飞宇. 外施吲哚乙酸对棉铃蔗糖代谢及产量性状的影响. 核农学报, 2021, 35: 1931-1940.
doi: 10.11869/j.issn.100-8551.2021.08.1931
Yin M Y, Chen G, Luo H H, Peng J J, Gao X, Yuan C K, Tang F Y. Effects of external IAA application on sucrose metabolism with cotton bolls and within-boll yield components. J Nucl Agric Sci, 2021, 35: 1931-1940. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.08.1931
[1] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[2] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[3] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[4] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[5] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[6] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[7] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[8] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[9] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[10] 刘栋, 张川, 任昊, 王洪章, 赵斌, 张吉旺, 任佰朝, 张永丽, 刘鹏. 不同磷钾肥施用水平下夏玉米花前叶片临界氮浓度稀释曲线与氮营养诊断研究[J]. 作物学报, 2023, 49(12): 3328-3341.
[11] 陈心怡, 朱盈, 马中涛, 张明月, 魏海燕, 张洪程, 刘国栋, 胡群, 李光彦, 许方甫. 光强和氮肥互作对南方软米粳稻灌浆结实期碳氮代谢影响及其与产量品质间关系[J]. 作物学报, 2023, 49(11): 3042-3062.
[12] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
[13] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[14] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[15] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .