欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3042-3062.doi: 10.3724/SP.J.1006.2023.22054

• 耕作栽培·生理生化 • 上一篇    下一篇

光强和氮肥互作对南方软米粳稻灌浆结实期碳氮代谢影响及其与产量品质间关系

陈心怡(), 朱盈, 马中涛, 张明月, 魏海燕(), 张洪程, 刘国栋, 胡群, 李光彦, 许方甫   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 农业农村部长江流域稻作技术创新中心 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2022-09-25 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-05-31
  • 通讯作者: 魏海燕, E-mail: wei_haiyan@163.com, Tel: 0514-87974595
  • 作者简介:E-mail: 2215502977@qq.com
  • 基金资助:
    国家自然科学基金项目(31971841);财政部和农业农村部国家现代农业产业技术体系建设专项(Rice, CARS-01);山东省重点研发计划课题项目(2021LZGC020-03);国家重点研发计划项目(2022YFD2301401);江苏高校优势学科建设工程(PAPD)项目

Effects of light intensity and nitrogen fertilizer interaction on carbon and nitrogen metabolism at grain-filling stage and its relationship with yield and quality of southern soft japonica rice

CHEN Xin-Yi(), ZHU Ying, MA Zhong-Tao, ZHANG Ming-Yue, WEI Hai-Yan(), ZHANG Hong-Cheng, LIU Guo-Dong, HU Qun, LI Guang-Yan, XU Fang-Fu   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-09-25 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-05-31
  • Supported by:
    National Natural Science Foundation of China(31971841);China Agriculture Research System of MOF and MARA(Rice, CARS-01);Key Research Program of Shandong Province, China(2021LZGC020-03);National Key Research and Development Program of China(2022YFD2301401);Priority Subject Program Development of Jiangsu Higher Education Institutions (PAPD)

摘要:

以南方软米粳稻南粳9108和扬农香28为材料, 设置2个光强处理和4种氮肥处理, 其中光强处理于结实期展开, 分为100%自然光照强度(L1)和50%自然光照强度(L2), 氮肥处理为生长中后期不施氮肥(N1), 分别于倒六叶(N2)、倒四叶(N3)、倒二叶(N4)期一次性施用氮肥, 研究了不同光照强度、氮肥施用时期及光氮互作条件下水稻结实期碳氮代谢差异及其对产量和品质的影响。结果表明, 结实期光强减弱, 剑叶净光合速率下降7.35%~42.36%、叶片中蔗糖磷酸合酶(SPS)和蔗糖合酶(SS)酶活性下降, 叶片C/N比下降3.98~6.49, 光合产物向籽粒输送减少, 籽粒中淀粉(包括直链淀粉)含量降低, 同时叶片中硝酸还原酶(NR)、谷氨酰胺合酶(GS)、谷氨酸合酶(GOGAT)活性增强, 植株含氮率提升, 蛋白质含量相对增加, 不利于产量和优良品质的形成。中后期施用氮肥后, 叶片中碳氮代谢关键酶活性显著提高、叶片的衰老减缓, 水稻的灌浆结实期延长, 有利于产量的提升。随中后期氮肥施用时期推迟, 氮代谢愈发旺盛, 籽粒中蛋白质含量相对明显增加, 导致淀粉与蛋白质、直链淀粉与蛋白质的比值均下降, 食味值下降。本试验条件下, 正常光照配合倒四叶施用氮肥处理(L1~N3)能够协同提高叶片碳氮代谢关键酶活性, 使得光合产物和含氮化合物以适宜的比例向籽粒输送, 最终籽粒中淀粉与蛋白质的比值在11.43~12.03之间, 直链淀粉与蛋白质的比值在1.34~1.50之间, 米饭的硬度低, 黏度、平衡性高, 食味好, 可同时获得高产和优质。

关键词: 水稻, 光照, 氮肥, 碳氮代谢, 产量, 品质

Abstract:

Southern soft japonica rice Nanjing 9108 and Yangnongxiang 28 were selected as the experimental materials, and two light intensity treatments, and four nitrogen treatments were set. Light intensity treatments [100% natural light intensity (L1) and 50% natural light intensity (L2)] and four nitrogen treatments [no nitrogen fertilizer (N1) in the middle and late growth stages, one-time nitrogen fertilizer applied at the top sixth leaf stage (N2), one-time nitrogen fertilizer applied at the top fourth leaf stage (N3), and one-time nitrogen fertilizer applied at the top second leaf stage (N4)] were conducted at grain-filling stage. The difference of carbon and nitrogen metabolism at grain-filling stage and its effects on rice yield and quality under the conditions of different light intensity and nitrogen application period as well as light-nitrogen interaction conditions were investigated. The results showed that with the decrease of light intensity at grain-filling stage the net photosynthetic rate of flag leaf decreased by 7.35%-42.36% on average, sucrose phosphate synthase (SPS), and sucrose synthase (SS) had low activity, the C/N ratio of leaves decreased by 3.98-6.49, the transportation of photosynthetic products to grains decreased, and the content of grain starch (including amylose) decreased. Meanwhile, the activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthetase (GOGAT) increased, plant nitrogen concentration increased, and the accumulation of protein increased relatively, which were not conducive to the formation of yield and good quality. After the application of nitrogen fertilizer at the middle and late growth stages, the activities of key enzyme in carbon and nitrogen metabolism in leaves were significantly increased, the aging of leaves was slowed down, and the grain-filling period of rice was prolonged, which were conducive to the increase of yield. With the delay of nitrogen fertilizer application period, nitrogen metabolism became more vigorous, and the protein content in grain had a relative significant increase, resulting in the decrease of the ratio of starch to protein and the ratio of amylose to protein, and the decrease of taste value. Under the experimental condition, normal light intensity combined with nitrogen fertilizer treatment (L1-N3) at the top fourth leaf stage synergistically improved the activities of key enzymes of carbon and nitrogen metabolism in leaves, thus the photosynthetic products and nitrogen-containing compounds were transported to grains in the appropriate proportions. Ultimately, the ratio of starch to protein in grain ranged from 11.43 to 12.03, and the ratio of amylose to protein ranged from 1.34 to 1.50, the rice had low hardness, high viscosity, and balance as well as good taste, high yield, and excellent quality could be obtained simultaneously.

Key words: rice, light, nitrogen fertilizer, carbon and nitrogen metabolism, yield, rice quality

表1

不同光强处理下氮肥用量"

光处理
Light
treatment
氮素处理Nitrogen treatment 总施氮量
Total
nitrogen
施氮量Nitrogen application rate
基肥
Base
fertilizer
分蘖肥
Tiller
fertilizer
中后期施肥倒数叶龄期
Reciprocal leaf age of the middle and
late stage of fertilization
6 4 2
L1 N1 189 94.5 94.5
N2 270 94.5 94.5 81
N3 270 94.5 94.5 81
N4 270 94.5 94.5 81
L2 N1 189 94.5 94.5
N2 270 94.5 94.5 81
N3 270 94.5 94.5 81
N4 270 94.5 94.5 81

表2

不同光、氮条件下南方软米粳稻花后剑叶净光合速率的差异"

品种
Cultivar
处理
Treatment
开花期
Anthesis
花后7 d
7 days after
anthesis
花后14 d
14 days after
anthesis
花后21 d
21 days after
anthesis
花后28 d
28 days after
anthesis
花后35 d
35 days after anthesis
花后42 d
42 days after anthesis
成熟期
Maturity
南粳9108
Nanjing 9108
L1N1 19.70 d 25.83 c 24.78 d 22.43 c 21.28 c 18.46 d 15.20 c 12.50 d
L1N2 20.36 c 26.58 bc 25.53 c 23.15 b 22.16 bc 19.81 c 16.08 bc 13.35 c
L1N3 21.57 b 27.34 b 26.17 b 24.34 a 23.27 ab 20.78 b 17.18 ab 13.98 b
L1N4 22.81 a 28.56 a 26.97 a 24.61 a 24.15 a 21.95 a 18.06 a 14.73 a
L2N1 14.92 f 21.34 f 18.11 g 15.83 f 15.78 e 13.05 g 9.73 e 7.26 g
L2N2 16.68 e 23.90 d 20.62 e 18.71 d 17.96 d 15.92 e 11.90 d 9.57 e
L2N3 16.40 e 22.57 e 20.05 f 17.94 e 16.68 de 15.14 ef 10.63 de 8.92 f
L2N4 16.25 e 22.70 e 19.89 f 17.89 e 16.52 e 14.75 f 10.47 e 8.49 f
扬农香28
Yangnong-
xiang 28
L1N1 16.28 d 26.79 c 23.23 c 18.97 b 22.84 c 17.46 c 16.76 c 11.56 d
L1N2 17.32 c 27.46 bc 24.23 b 19.18 b 23.56 c 18.85 b 17.47 c 12.28 c
L1N3 18.62 b 28.38 ab 25.27 a 20.91 a 24.70 b 19.15 b 18.61 b 12.97 b
L1N4 19.13 a 29.57 a 25.83 a 21.17 a 25.72 a 20.88 a 19.62 a 14.46 a
L2N1 12.57 g 20.39 e 18.35 f 15.02 e 17.46 e 14.46 e 11.40 e 7.66 g
L2N2 15.05 e 22.10 d 21.78 d 17.77 c 18.95 d 16.28 d 12.89 d 9.50 e
L2N3 14.81 e 21.24 de 20.50 e 16.78 d 18.40 de 15.57 de 12.34 de 8.79 f
L2N4 14.31 f 20.82 e 20.37 e 16.82 cd 18.48 de 15.46 de 12.42 de 8.58 f
F
F -value
光处理
Light (L)
304.00** 1309.15** 1863.68** 8495.97** 39,554.55** 1,302,755.37** 31,482.96** 12,543.97**
氮处理Nitrogen (N) 108.97** 44.43** 144.74** 82.76** 33.05** 69.17** 69.98** 181.28**
光处理×氮处理L×N 25.38** 46.72** 52.11** 46.84** 15.89** 31.18** 33.66** 115.94**

表3

不同光、氮条件下南方软米粳稻叶面积指数及叶面积衰减率的差异"

品种
Cultivar
处理
Treatment
叶面积指数Leaf area index 叶面积衰减率
Leaf area attenuation rate
(LAI d-1)
拔节期Shooting 抽穗期Heading 成熟期Maturity
南粳9108
Nanjing 9108
L1N1 3.90 c 7.01 c 2.64 d 0.0951 a
L1N2 4.85 a 7.33 b 2.78 d 0.0988 a
L1N3 4.31 b 7.72 a 3.54 b 0.0852 b
L1N4 3.91 c 7.02 c 3.14 c 0.0731 d
L2N1 3.91 c 7.03 c 3.07 c 0.0862 b
L2N2 4.86 a 7.32 b 3.84 a 0.0756 cd
L2N3 4.32 b 7.71 a 3.82 a 0.0793 c
L2N4 3.91 c 7.02 c 3.61 b 0.0642 e
扬农香28
Yangnongxiang 28
L1N1 3.78 c 7.08 d 2.89 d 0.0912 a
L1N2 4.77 a 7.49 b 3.21 d 0.093 a
L1N3 4.30 b 7.87 a 3.53 b 0.0885 b
L1N4 3.80 c 7.20 c 3.21 c 0.0751 ef
L2N1 3.77 c 7.08 d 3.16 c 0.0851 c
L2N2 4.78 a 7.48 b 3.95 a 0.0766 e
L2N3 4.31 b 7.88 a 3.82 a 0.0828 d
L2N4 3.78 c 7.22 c 3.31 c 0.0738 f
F 光处理Light (L) NS NS 5952.438** 2178.858*
F-value 氮处理Nitrogen (N) 73.54** 56.332** 84.698** 131.993**
光处理×氮处理L×N NS NS 20.908** 21.290**

图1

不同光强、氮肥条件下南方软米粳稻花后叶片中蔗糖合酶(SS)、蔗糖磷酸合酶(SPS)的差异 图中“L1, L2”分别指结实期100%自然光照强度和50%自然光照强度, “N2, N3, N4”分别指中后期于倒六叶, 倒四叶, 倒二叶施用氮肥, “N1”指中后期不施氮肥处理。图中所标注的字母为蔗糖合酶和蔗糖磷酸合酶活性的显著性, 不同字母表示在0.05概率水平差异显著。"

图2

不同光、氮条件下南方软米粳稻花后叶片中可溶性糖和淀粉含量的差异 处理同图1。图中所标注字母为叶片淀粉和可溶性糖含量的显著性, 不同字母表示在0.05概率水平差异显著。"

图3

不同光、氮条件下南方软米粳稻花后籽粒中可溶性糖和淀粉含量的差异 处理同图1。图中所标注字母为籽粒淀粉和可溶性糖含量的显著性, 不同字母表示在0.05概率水平差异显著。"

图4

不同光、氮条件下南方软米粳稻花后叶片中硝酸还原酶(NR)、谷氨酰胺合酶(GS)和谷氨酸合酶(GOGAT)的差异 处理同图1。图中所标注字母为硝酸还原酶、谷氨酰胺合酶和谷氨酸合酶的显著性, 不同字母表示在0.05概率水平差异显著。"

表4

不同光、氮条件下南方软米粳稻花后高效叶片SPAD值的差异"

品种
Cultivar
处理
Treatment
开花期Anthesis 花后7 d
7 days after anthesis
花后14 d
14 days after anthesis
花后21 d
21 days after anthesis
花后28 d
28 days after anthesis
花后35 d
35 days after anthesis
花后42 d
42 days after anthesis
成熟期Maturity 成熟期/开花期
Maturity /Anthesis
南粳9108
Nanjing 9108
L1N1 36.19 f 42.30 h 40.95 h 38.04 f 38.48 h 31.19 g 25.06 h 16.44 h 0.45 b
L1N2 38.65 e 43.53 g 43.06 g 41.37 e 39.53 g 33.17 f 26.38 g 18.05 g 0.47 b
L1N3 41.36 d 45.64 f 44.61 f 44.31 d 40.96 f 34.03 f 27.90 f 18.98 f 0.46 b
L1N4 43.83 ab 47.35 e 46.89 e 45.05 d 42.79 e 36.91 e 29.22 e 21.40 e 0.49 b
L2N1 39.26 e 49.27 d 48.15 d 46.44 c 45.34 d 42.21 d 37.93 d 24.35 d 0.62 a
L2N2 41.02 cd 50.44 c 49.37 c 47.53 b 47.49 c 44.39 c 40.42 c 25.84 c 0.63 a
L2N3 42.13 bc 52.79 b 51.35 b 48.35 ab 49.82 b 46.53 b 42.07 b 26.58 b 0.63 a
L2N4 43.86 a 53.06 a 52.34 a 48.98 a 51.23 a 48.27 a 44.75 a 28.22 a 0.64 a
扬农香28
Yangnongxiang28
L1N1 37.09 e 41.93 h 40.23 g 38.79 g 32.29 h 26.34 h 21.64 h 15.17 h 0.41 c
L1N2 38.99 d 43.76 g 42.62 f 40.03 f 36.89 g 27.56 g 23.23 g 17.37 g 0.45 bc
L1N3 41.38 c 45.35 f 43.74 e 41.71 e 38.37 f 28.62 f 24.75 f 18.48 f 0.45 bc
L1N4 43.47 ab 46.70 e 44.14 e 42.95 d 39.98 e 30.28 e 26.18 e 20.67 e 0.48 b
L2N1 40.22 c 49.99 d 47.02 d 44.30 c 43.57 d 34.77 d 30.87 d 25.65 d 0.64 a
L2N2 42.59 b 51.77 c 48.53 c 46.85 b 44.70 c 36.09 c 32.69 c 26.57 c 0.62 a
L2N3 43.12 b 52.64 b 49.82 b 47.92 b 46.99 b 37.93 b 33.57 b 27.67 b 0.64 a
L2N4 44.49 a 53.95 a 51.49 a 50.70 a 48.40 a 39.97 a 34.75 a 28.89 a 0.65 a
F
F -value
光处理Light (L) NS 4577.15** 356.73** 3605.25** 2849.35** 1483.47** 11,341.73** 2433.76** 145.82**
氮处理Nitrogen (N) 60.04** 778.83** 246.67** 61.36** 150.01** 198.30** 441.72** 112.09** 5.30*
光处理×氮处理L×N NS 20.54** 7.11** 14.90** 5.67* 3.55* 23.98** 7.13** NS

表5

不同光、氮条件下南方软米粳稻花后叶片含氮率的差异"

品种
Cultivar
处理
Treatment
含氮率Nitrogen content (%)
开花期 花后7 d 花后14 d 花后21 d 花后28 d 花后35 d 花后42 d 成熟期
Anthesis 7 days after anthesis 14 days after anthesis 21 days after anthesis 28 days after anthesis 35 days after anthesis 42 days after anthesis Maturity
南粳9108
Nanjing 9108
L1N1 2.69 d 2.38 f 2.160 h 1.79 f 1.56 g 1.45 g 1.31 h 1.23 f
L1N2 2.96 c 2.77 e 2.45 g 2.18 e 1.73 f 1.63 f 1.41 g 1.28 ef
L1N3 3.14 b 2.89 d 2.54 f 2.28 d 1.93 e 1.74 e 1.52 f 1.31 e
L1N4 3.35 a 3.02 c 2.65 e 2.35 c 1.94 e 1.83 d 1.58 e 1.39 d
L2N1 2.70 d 2.89 d 2.73 d 2.35 c 2.01 d 1.95 c 1.62 d 1.48 c
L2N2 2.96 c 3.01 c 2.87 c 2.49 b 2.17 c 1.99 bc 1.81 c 1.55 b
L2N3 3.15 b 3.14 b 2.95 b 2.51 b 2.23 b 2.04 b 1.87 b 1.59 ab
L2N4 3.36 a 3.25 a 3.11 a 2.75 a 2.39 a 2.13 a 1.99 a 1.62 a
扬农香28
Yangnongxiang 28
L1N1 2.45 a 2.27 e 2.11 f 1.84 g 1.69 h 1.56 h 1.39 g 1.31 g
L1N2 2.78 b 2.53 d 2.24 e 2.08 f 1.74 g 1.61 g 1.48 f 1.39 f
L1N3 3.47 c 2.70 c 2.45 d 2.18 e 1.82 f 1.70 f 1.50 f 1.45 e
L1N4 3.50 d 2.97 b 2.95 a 2.53 d 2.07 e 1.81 e 1.58 e 1.48 de
L2N1 2.46 a 2.71 c 2.70 c 2.55 d 2.24 d 1.94 d 1.77 d 1.52 d
L2N2 2.79 b 2.97 b 2.73 c 2.60 c 2.36 c 2.09 c 1.85 c 1.64 c
L2N3 3.49 c 3.09 ab 2.84 b 2.76 b 2.41 b 2.16 b 1.93 b 1.68 b
L2N4 3.51 d 3.16 a 2.92 ab 2.89 a 2.56 a 2.23 a 1.99 a 1.73 a
F
F-value
光处理Light (L) NS 6713.07** 7528.59** 24091.47** 7921.00** 6275.21** 33,718.14** 1148.85*
氮处理Nitrogen (N) 340.51** 756.47** 504.46** 1100.79** 1455.96** 284.47** 613.90** 211.70**
光处理×氮处理L×N NS 76.74** 22.05** 121.07** 74.62** 42.82** 19.29** 359.65**

表6

不同光、氮条件下南方软米粳稻花后植株含氮率及N素积累的差异"

品种
Cultivar
处理
Treatment
含氮率Nitrogen content (%) 氮素积累量(抽穗期至成熟期)
Nitrogen accumulation
(kg hm-2)
开花期
Anthesis
花后7 d
7 days after anthesis
花后14 d
14 days after anthesis
花后21 d
21 days after anthesis
花后28 d
28 days after anthesis
花后35 d
35 days after anthesis
花后42 d
42 days after anthesis
成熟期
Maturity
南粳9108
Nanjing 9108
L1N1 1.14 d 1.12 h 1.09 g 0.97 g 0.96 f 0.95 g 0.94 f 0.90 g 21.89 d
L1N2 1.47 c 1.17 g 1.12 f 1.02 f 0.97 f 0.97 fg 0.95 f 0.94 f 25.12 c
L1N3 1.54 b 1.24 f 1.23 e 1.14 e 1.09 e 1.01 f 1.02 e 0.97 ef 35.14 a
L1N4 1.60 a 1.26 e 1.25 de 1.15 e 1.15 de 1.07 e 1.03 e 1.00 e 28.40 b
L2N1 1.15 d 1.38 d 1.33 cd 1.27 d 1.22 d 1.19 d 1.15 d 1.10 d 12.98 h
L2N2 1.47 c 1.43 c 1.39 c 1.35 c 1.33 c 1.27 c 1.25 c 1.26 c 19.59 e
L2N3 1.56 b 1.64 b 1.55 b 1.51 b 1.47 b 1.45 b 1.43 b 1.33 b 16.53 f
L2N4 1.61 a 1.73 a 1.69 a 1.66 a 1.64 a 1.62 a 1.60 a 1.46 a 14.01 g
扬农香28
Yangnongxiang28
L1N1 1.09 d 1.04 h 1.00 g 0.97 g 0.94 g 0.91 g 0.89 h 0.86 h 22.90 d
L1N2 1.12 c 1.10 g 1.07 f 1.05 f 1.04 f 1.00 f 0.95 g 0.89 g 26.50 c
L1N3 1.18 b 1.13 f 1.10 f 1.08 f 1.07 ef 1.02 f 0.98 f 0.94 f 36.03 a
L1N4 1.25 a 1.22 e 1.19 e 1.17 e 1.13 e 1.10 e 1.05 e 0.99 e 28.79 b
L2N1 1.10 d 1.36 d 1.30 d 1.25 d 1.21 d 1.17 d 1.15 d 1.11 d 13.44 g
L2N2 1.13 c 1.45 c 1.43 c 1.40 c 1.35 c 1.32 c 1.28 c 1.21 c 17.74 e
L2N3 1.20 b 1.58 b 1.54 b 1.51 b 1.46 b 1.38 b 1.34 b 1.29 b 16.20 f
L2N4 1.26 a 1.71 a 1.69 a 1.67 a 1.63 a 1.53 a 1.45 a 1.38 a 14.80 fg
F
F-value
光处理Light (L) NS 51,019.19** 505.91** 560.92** 269.15** 4181.79** 720.07** 76,863.80** 1172.98**
氮处理Nitrogen (N) 283.52** 103.93** 146.10** 80.92** 128.87** 143.27** 136.43** 105.29** 109.80**
光处理×氮处理L×N NS 17.11** 18.83** 11.10** 17.78** 28.75** 35.45** 24.06** 48.61**

图5

不同光、氮条件下对南方软米粳稻叶片和籽粒C/N比的差异 处理同图1。图中所标注字母为叶片和籽粒中C/N的显著性, 不同字母表示在0.05概率水平差异显著。"

表7

不同光、氮条件下南方软米粳稻产量构成因素的差异"

品种
Cultivar
处理
Treatment
穗数
Panicle number
(×104 hm-2)
每穗粒数
Grains per
panicle
总颖花量
Total spikelet
(×104 hm-2)
结实率
Filled grain
percentage (%)
千粒重
1000-grain
weight (g)
稻谷产量
Grain yield
(t hm-2)
南粳9108
Nanjing 9108
L1N1 295.70 cd 113.23 d 33,480.84 d 95.47 a 26.23 b 8.33 d
L1N2 334.75 a 119.11 bc 39,872.32 b 93.64 bc 25.39 c 9.29 c
L1N3 320.71 b 134.54 a 43,148.40 a 95.12 a 26.34 b 10.57 a
L1N4 302.36 c 122.92 b 37,166.26 c 95.43 a 27.36 a 9.66 b
L2N1 295.25 d 111.55 d 32,935.61 d 89.40 c 20.71 de 6.85 g
L2N2 334.60 a 118.48 c 39,644.51 b 85.39 d 20.59 e 8.13 d
L2N3 320.26 b 133.94 a 42,894.24 a 78.47 e 20.11 f 7.70 e
L2N4 300.42 cd 122.13 bc 36,690.89 c 74.55 f 20.86 d 7.45 f
扬农香28
Yangnongxiang 28
L1N1 325.16 d 104.52 cd 33,985.64 d 95.60 a 25.30 b 8.39 e
L1N2 375.19 a 108.20 c 40,593.95 b 93.58 b 24.51 c 9.39 c
L1N3 364.07 b 121.79 a 44,338.63 a 95.17 a 25.34 b 10.58 a
L1N4 341.63 c 117.56 ab 40,161.69 bc 95.41 a 26.91 a 9.76 b
L2N1 323.88 d 102.67 d 33,254.48 d 86.51 c 20.99 d 7.14 h
L2N2 374.58 ab 107.57 c 40,294.51 bc 84.74 d 20.02 f 8.25 d
L2N3 363.68 b 120.91 a 43,970.13 a 74.88 e 20.08 f 7.84 f
L2N4 340.23 c 116.14 b 39,513.37 c 72.28 f 20.59 e 7.53 g
F
F-value
年份Year NS NS NS NS NS NS
光处理
Light (L)
NS NS 3782.25* 2339.39* 1282.81* 351.083*
氮处理
Nitrogen (N)
69.66** 104.93** 84.24** 67.39** 11.84** 607.95**
光处理×氮处理L×N NS NS NS 83.37** 41.98** 220.50**

表8

不同光、氮条件下南方软米粳稻干物质积累的差异"

品种
Cultivar
处理
Treatment
开花期
Anthesis
(t hm-2)
成熟期
Maturity
(t hm-2)
花后干物质积累量
Dry matter accumulation after anthesis (t hm-2)
南粳9108
Nanjing 9108
L1N1 9.58 c 15.79 c 6.20 b
L1N2 10.68 b 17.40 b 6.72 ab
L1N3 11.67 a 19.01 a 7.33 a
L1N4 10.28 b 17.31 b 7.03 ab
L2N1 9.58 c 11.59 g 2.01 d
L2N2 10.68 b 14.58 d 4.91 c
L2N3 11.67 a 13.98 e 2.31 d
L2N4 10.28 b 12.34 f 2.06 d
扬农香28
Yangnongxiang 28
L1N1 9.56 c 15.60 c 6.03 b
L1N2 11.49 b 17.97 b 6.48 b
L1N3 12.03 a 19.54 a 7.51 a
L1N4 11.26 b 18.10 b 6.84 b
L2N1 9.56 c 11.31 g 1.74 d
L2N2 11.49 b 14.84 d 3.35 c
L2N3 12.03 a 14.31 e 2.28 d
L2N4 11.26 b 13.35 f 2.10 d
F
F-value
年份Year (Y) NS NS NS
光处理Light (L) NS 647.87* 65,746.22**
氮处理Nitrogen (N) 77.29** 39.42** 41.746**
光处理×氮处理L×N NS 6.69* 38.96**

表9

不同光、氮条件对南方软米粳稻加工和外观品质的差异"

品种
Cultivar
处理
Treatment
糙米率
Brown
rice rate
精米率
Milled
rice rate
整精米率
Head
rice rate
垩白粒率
Chalky
grain rate
垩白度Chalkiness degree
南粳9108
Nanjing 9108
L1N1 82.43 d 72.18 d 62.81 d 68.96 e 27.02 e
L1N2 83.38 c 72.97 c 65.30 c 57.91 h 20.14 h
L1N3 83.50 b 73.48 b 66.10 b 62.08 g 22.22 g
L1N4 83.93 a 73.91 a 67.72 a 68.03 f 25.93 f
L2N1 79.39 h 66.92 h 57.46 h 78.03 a 37.81 a
L2N2 80.29 g 67.89 g 59.86 g 70.97 d 31.58 d
L2N3 81.17 f 69.10 f 60.60 f 72.47 c 34.20 c
L2N4 81.98 e 69.90 e 61.09 e 74.90 b 35.60 b
扬农香28
Yangnongxiang 28
L1N1 83.03 d 73.32 d 63.56 d 39.23 e 13.82 e
L1N2 83.76 c 73.45 c 64.60 c 27.57 h 9.35 h
L1N3 84.01 b 74.25 b 66.08 b 29.22 g 10.93 g
L1N4 84.53 a 74.51 a 66.76 a 34.47 f 12.46 f
L2N1 79.99 h 66.77 h 56.21 h 49.63 a 20.31 a
L2N2 80.75 g 68.55 g 59.56 g 40.46 d 15.90 d
L2N3 80.84 f 68.98 f 60.61 f 44.44 c 17.56 c
L2N4 82.06 e 69.69 e 61.88 e 46.71 b 19.40 b
F
F-value
年份Year (Y) NS NS NS NS NS
光处理Light (L) 4055.51** 1716.10* 3768.32* 8505.15** 7515.38**
氮处理Nitrogen (N) 19.28** 37.12** 56.29** 115.72** 242.14**
光处理×氮处理L×N 13.68* NS 13.06** 16.22** 15.47**

表10

不同光、氮条件下南方软米粳稻营养和蒸煮食味品质的差异"

品种
Cultivar
处理
Treatment
蛋白质含量
PC (%)
直链淀粉含量
AC (%)
总淀粉含量
TSC (%)
直链淀粉/蛋白质AC/PC 总淀粉/蛋白质TSC/PC 食味品质Taste quality
外观
Appearance
硬度
Hardness
黏度
Stickiness
平衡度
Balance degree
食味值
Taste value
南粳9108
Nanjing 9108
L1N1 6.68 h 11.13 a 85.96 a 1.67 a 12.88 a 8.78 a 5.30 g 8.92 a 8.88 a 86.53 a
L1N2 6.99 g 10.91 b 85.30 b 1.55 b 12.21 b 8.73 a 5.47 f 8.78 ab 8.75 a 85.90 ab
L1N3 7.26 f 10.58 c 83.83 c 1.47 c 11.55 c 8.63 ab 5.48 f 8.83 ab 8.72 a 84.80 ab
L1N4 7.48 e 10.35 d 83.08 d 1.39 d 11.11 d 8.48 bc 5.67 e 8.67 b 8.53 b 82.77 b
L2N1 7.93 d 10.03 e 83.11 e 1.27 e 10.51 e 8.32 cd 5.83 d 8.42 c 8.42 bc 80.50 c
L2N2 8.32 c 9.91 f 82.56 f 1.20 f 9.93 f 8.13 d 6.03 c 8.28 c 8.33 c 79.2 cd
L2N3 9.03 b 9.79 g 81.30 g 1.09 g 9.02 g 7.70 e 6.18 b 7.93 d 7.83 d 77.20 d
L2N4 9.27 a 9.44 h 80.77 h 1.02 h 8.73 h 6.88 f 6.65 a 6.92 e 6.62 e 67.27 e
扬农香28 Yangnongxiang 28 L1N1 6.41 h 10.06 a 85.14 a 1.56 a 13.30 a 8.70 a 5.43 e 8.85 a 8.85 a 85.50 a
L1N2 6.78 g 9.80 b 84.61 b 1.45 b 12.49 b 8.62 a 5.62 d 8.7 ab 8.63 b 83.30 b
L1N3 7.04 f 9.54 c 84.03 c 1.37 c 11.95 c 8.48 a 5.72 d 8.65 b 8.53 b 82.13 b
L1N4 7.41 e 9.34 d 83.35 d 1.26 d 11.26 d 7.95 b 6.05 c 8.05 c 8.07 c 78.43 c
L2N1 8.28 d 8.97 e 82.12 e 1.09 e 9.97 e 7.48 c 6.22 b 7.72 d 7.57 d 74.70 d
L2N2 9.06 c 8.59 f 80.90 f 0.96 f 8.99 f 7.12 d 6.23 b 7.48 e 7.27 e 72.43 e
L2N3 9.58 b 8.33 g 80.38 g 0.88 g 8.44 g 6.85 e 6.47 b 7.17 f 6.70 f 69.07 f
L2N4 10.13 a 8.07 h 79.34 h 0.80 h 7.87 h 6.18 f 6.78 a 6.52 g 6.15 g 64.70 g
F
F-value
年份Year (Y) NS NS NS NS NS NS NS NS NS NS
光处理Light (L) 2,436,721.00** 15,987.00** 120.73** 1968.43** 4585.31** 456.33** 122.07** 243.00** 416.89** 4479.889**
氮处理Nitrogen (N) 553.92** 295.92** 122.37** 627.65** 253.35** 15.84** 78.33** 9.36** 17.41** 765.893**
光处理×氮处理L×N 152.31** 97.45** 3.50* 22.47** 18.68** 8.90** 16.11** 6.79** 9.21** 34.728**
[1] 李明启. 作物的“碳代谢”和“氮代谢”. 广东农业科学, 1981, (2): 12-13.
Li M Q. “Carbon metabolism” and “nitrogen metabolism” of crops. Guangdong Agric Sci, 1981, (2): 12-13 (in Chinese).
[2] 陈雅玲, 包劲松. 水稻胚乳淀粉合成相关酶的结构、功能及其互作研究进展. 中国水稻科学, 2017, 31: 1-12.
doi: 10.16819/j.1001-7216.2017.6132
Chen Y L, Bao J S. Progress in structures, functions and interactions of starch synthesis related enzymes in rice endosperm. Chin J Rice Sci, 2017, 31: 1-12 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6132
[3] 张青, 孟杉杉, 陈梓春, 王远江, 韦存虚, 王娟. 谷物胚乳淀粉合成相关酶的调控机制研究进展. 植物生理学报, 2021, 57: 1-11.
Zhang Q, Meng S S, Chen Z C, Wang Y J, Wei C X, Wang J. Progress of regulation mechanism of starch biosynthesis related enzymes in cereal endosperm. Plant Physiol Commun, 2021, 57: 1-11 (in Chinese with English abstract).
[4] 韩展誉, 管弦悦, 赵倩, 吴春艳, 黄福灯, 潘刚, 程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响. 作物学报, 2020, 46: 1087-1098.
doi: 10.3724/SP.J.1006.2020.92062
Han Z Y, Guan X Y, Zhao Q, Wu C Y, Huang F D, Pan G, Cheng F M. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains. Acta Agron Sin, 2020, 46: 1087-1098 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.92062
[5] 韩展誉, 吴春艳, 许艳秋, 黄福灯, 熊义勤, 管弦悦, 周庐建, 潘刚, 程方民. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响. 中国农业科学, 2021, 54: 1439-1454.
doi: 10.3864/j.issn.0578-1752.2021.07.010
Han Z Y, Wu C Y, Xu Y Q, Huang F D, Xiong Y Q, Guan X Y, Zhou L J, Pan G, Cheng F M. Effects of high-temperature at filling stage on grain storage protein accumulation and its biosynthesis metabolism for rice plants under different nitrogen application levels. Sci Agric Sin, 2021, 54: 1439-1454 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.010
[6] 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机理. 中国农业气象, 2020, 41: 32-42.
Wang J K, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhu D F, Zhang Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling. Chin J Agrometeorol, 2020, 41: 32-428 (in Chinese with English abstract).
[7] 徐国伟, 吕强, 陆大克, 王贺正, 陈明灿. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响. 作物学报, 2016, 42: 1495-1505.
doi: 10.3724/SP.J.1006.2016.01495
Xu G W, Lyu Q, Lu D K, Wang H Z, Chen M C. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity. Acta Agron Sin, 2016, 42: 1495-1505 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01495
[8] 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响. 作物学报, 2021, 47: 1966-1977.
doi: 10.3724/SP.J.1006.2021.02059
Lyu T F, Chen J, Dai Z, Ma P, Yang Z Y, Zheng C G, Ma J. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice. Acta Agron Sin, 2021, 47: 1966-1977 (in Chinese with English abstract).
[9] Ding C, You J, Chen L, Wang S, Ding Y. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Rep, 2014, 33: 363-371.
doi: 10.1007/s00299-013-1536-9 pmid: 24258242
[10] 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础. 中国农业科学, 2017, 50: 4055-4071.
doi: 10.3864/j.issn.0578-1752.2017.21.001
Lyu C G, Li X, Chen G X. Photosynthetic characteristics and its physiological basis of super high-yielding hybrid rice Liangyoupeijiu. Sci Agric Sin, 2017, 50: 4055-4071 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.21.001
[11] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43: 407-419.
doi: 10.3724/SP.J.1006.2017.00407
Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2017, 43: 407-419 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00407
[12] 从夕汉, 施伏芝, 阮新民, 罗玉祥, 王元垒, 许有尊, 罗志祥. 施氮量对不同品种水稻氮素利用及碳氮代谢关键酶的影响. 河南农业大学学报, 2019, 53: 325-330.
Cong X H, Shi F Z, Wang Y L, Ruan X M, Xu Y Z, Luo Y X, Luo Z X. Effects of nitrogen application rate on nitrogen use efficiency and key enzymes for carbon and nitrogen metabolism in different rice varieties. J Henan Agric Sci, 2019, 53: 325-330 (in Chinese with English abstract).
[13] 胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响. 作物学报, 2017, 43: 420-431.
doi: 10.3724/SP.J.1006.2017.00420
Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Han B F. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality. Acta Agron Sin, 2017, 43: 420-431. (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00420
[14] 陶进, 钱希旸, 剧成欣, 刘立军, 张耗, 顾骏飞, 王志琴, 杨建昌. 不同年代中籼水稻品种的米质及其对氮肥的响应. 作物学报, 2016, 42: 1352-1362.
doi: 10.3724/SP.J.1006.2016.01352
Tao J, Qian X Y, Ju C X, Liu L J, Zhang H, Gu J F, Wang Z Q, Yang J C. Grain quality and its response to nitrogen fertilizer in mid-season indica rice varieties planted in different decades from 1950s to 2010s. Acta Agron Sin, 2016, 42: 1352-1362 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01352
[15] Deng F, Li B, Yuan Y J, He C Y, Zhou X, Li Q P, Zhu Y Y, Huang X F, He Y X, Ai X F, Tao Y F, Zhou W, Wang L, Cheng H, Chen Y, Wang M T, Ren W J. Increasing the number of seedlings per hill with reduced number of hills improves rice grain quality by optimizing canopy structure and light utilization under shading stress. Field Crops Res, 2022, 287: 108668.
doi: 10.1016/j.fcr.2022.108668
[16] Schmierer M, Knopf O, Asch F. Growth and photosynthesis responses of a super dwarf rice genotype to shade and nitrogen supply. Rice Sci, 2021, 28: 178-190.
doi: 10.1016/j.rsci.2021.01.007
[17] 杜彦修, 季新, 张静, 李俊周, 孙红正, 赵全志. 弱光对水稻生长发育影响研究进展. 中国生态农业学报, 2013, 21: 1307-1317.
Du Y X, Ji X, Zhang J, Li J Z, Sun H Z, Zhao Z Q. Research progress on the impacts of low light intensity on rice growth and development. Chin J Eco-Agric, 2013, 21: 1307-1317 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2013.01307
[18] 王亚江, 颜希亭, 孟天瑶, 杨大柳, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲. 抽穗前后遮光对超级粳稻产量形成的影响. 中国稻米, 2014, 20: 18-21.
Wang Y J, Yan X T, Meng T Y, Yang D L, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Hu K. Effects of shading before and after heading on yield formation of super japonica rice. China Rice, 2014, 20: 18-21 (in Chinese with English abstract).
[19] Gurevitch J, Howard T G, Ashton I W, Leger E A, Howe K M, Woo E, Lerdau M. Effects of experimental manipulation of light and nutrients on establishment of seedlings of native and invasive woody species in Long Island, NY forests. Biol Invasions, 2008, 10: 821-831.
doi: 10.1007/s10530-008-9241-2
[20] 姜楠. 遮光对北方粳稻产量和品质的形成及其生理机制的研究. 沈阳农业大学博士学位论文,辽宁沈阳, 2013.
Jiang N. Study on Development of Yield and Quality and Its Physiological Mechanism of Japanica Rice under Shading in Northern China. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2013 (in Chinese with English abstract).
[21] 朱萍, 贺阳冬, 杨志远, 孙永健, 马均. 孕穗期和抽穗期弱光胁迫对2个杂交稻组合生理特性及产量的影响. 西南农业学报, 2014, 27: 559-566.
Zhu P, He Y D, Yang Z Y, Sun Y J, Ma J. Effects of low-light stress at shooting and heading stage on some Photosynthetic characteristics and grain yield of two hybrid rice combinations. Southwest China, 2014, 27: 559-566 (in Chinese with English abstract).
[22] Elizabete C S A, Michael E S. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol, 2013, 161: 4.
[23] 王亚江, 魏海燕, 颜希亭, 葛梦婕, 孟天瑶, 张洪程, 戴其根, 霍中洋, 许轲, 费新茹. 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响. 作物学报, 2014, 40: 1235-1244.
doi: 10.3724/SP.J.1006.2014.01235
Wang Y J, Wei H Y, Yan X T, Ge M J, Meng T Y, Zhang H C, Dai Q G, Huo Z Y, Xu Ke, Fei X R. Effects of light, nitrogen and their interaction on grain yield and nitrogen, phosphorus and potassium absorption in japonica super rice. Acta Agron Sin, 2014, 40: 1235-1244 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01235
[24] 董明辉, 惠锋, 顾俊荣, 陈培峰, 杨代凤, 乔中英. 灌浆期不同光强对水稻不同粒位籽粒品质的影响. 中国生态农业学报, 2013, 21: 164-170.
Dong M H, Hui F, Gu J R, Chen P F, Yang D F, Qiao Z Y. Effect of light intensity on grain quality of rice at different spike positions during grain-filling stage. Chin J Eco-Agric, 2013, 21: 164-170 (in Chinese with English abstract).
[25] 李林, 张更生. 阴害影响水稻产量的机制及其调控技术: II.灌浆期模拟阴害影响水稻产量的机制. 中国农业气象, 1994, 15(3): 5-9
Li L, Zhang G S. Mechanism of insufficient illumination impact on rice yield and its controlling technology: II.Mechanism of impact of simulated insufficient illumination during the grain-filling period on rice yield. Chin J Agrometeorol, 1994, 15(3): 5-9 (in Chinese with English abstract).
[26] 秦建权, 唐启源, 李迪秦, 张运波, 李小勇, 杨胜海, 陈立军. 抽穗后光照强度对超级杂交稻干物质生产及氮素吸收与分配的影响. 四川农业大学学报, 2010, 28: 28-34.
Qin J Q, Tang Q, Li D Q, Zhang Y B, Li X Y, Yang S H, Chen L J. Effects of different light intensity after heading stage on dry matter accumulation and nitrogen uptake and distribution of super hybrid rice. J Sichuan Agric Sci, 2010, 28: 28-34 (in Chinese with English abstract).
[27] 刘奇华, 李天, 张建军. 生育前期遮光对水稻后期功能叶生长及稻米品质的影响. 生态学杂志, 2006, 10: 1167-1172.
Liu Q H, Li T, Zhang J J. Effects of early stage shading on function leaf growth at grain-filling stage and on grain quality of rice. Chin J Ecol, 2006, 25: 1167-1172 (in Chinese with English abstract).
[28] Mandal D, Tudu S, Mitra S R, De G C. Effect of common packing materials on keeping quality of sugarcane jaggery during monsoon season. Sugar Tech, 2006, 8: 137-142.
doi: 10.1007/BF02943648
[29] 王志琴, 杨建昌, 朱庆森, 郎有忠. 水稻抽穗期茎鞘中储存的可用性糖与籽粒充实的关系. 江苏农学院学报, 1997, (4): 14-18.
Wang Z Q, Yang J C, Zhu Q S, Lang Y Z. Relation of the usable carbohydrate reserved in stems and sheaths at heading stage with grain-filling in rice plantas. J Jiangsu Agric Sci, 1997, (4): 14-18 (in Chinese with English abstract).
[30] 黄丽芬, 全晓艳, 张蓉, 袁毅, 赵伟, 姜玲玲, 施金琦, 庄恒扬. 光氮及其互作对水稻干物质积累与分配的影响. 中国水稻科学, 2014, 28: 167-176.
Huang L F, Quan X Y, Zhang R, Yuan Y, Zhao W, Jiang L L, Shi J Q, Zhuang H Y. Interactive effects of light intensity and nitrogen supply on dry matter production and distribution of rice. Chin J Rice Sci, 2014, 28: 167-176 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7216.2014.02.008
[31] 秦建权, 唐启源, 李迪秦, 张运波, 李小勇, 杨胜海, 陈立军. 抽穗后光照强度对超级杂交稻干物质生产及氮素吸收与分配的影响. 四川农业大学学报, 2010, 28: 28-34.
Qin J Q, Tang Q, Li D Q, Zhang Y B, Li X Y, Yang S H, Chen L J. Effects of different light intensity after heading stage on dry matter accumulation and nitrogen uptake and distribution of super hybrid rice. J Sichuan Agric Sci, 2010, 28: 28-34 (in Chinese with English abstract).
[32] 任万军, 杨文钰, 张国珍, 朱霞, 樊高琼, 徐精文. 弱光对杂交稻氮素积累、分配与子粒蛋白质含量的影响. 植物营养与肥料学报, 2003, 9: 288.
Ren W J, Yang W Y, Zhang G Z, Zhu X, Fan G Q, Xu J W. Effect of low-light stress on nitrogen accumulation distribution and grains protein content of Indica hybrid. Plant Nutr Fert Sci, 2003, 9: 288 (in Chinese with English abstract).
[33] 方笑堃, 陈志炜, 程兆康, 姜海波, 邱丹, 罗小三. 太阳辐射减弱对水稻光合生理特性和中微量元素积累的影响. 应用生态学报, 2021, 32: 1345-1351.
doi: 10.13287/j.1001-9332.202104.030
Fang X K, Chen Z W, Cheng Z K, Jiang H B, Qiu D, Luo X S. Effects of reduced solar radiation on photosynthetic physiological characteristics and accumulation of secondary and micro elements in paddy rice. Chin J Appl, 2021, 32: 1345-1351 (in Chinese with English abstract).
[34] Liang Y P, Wang J Y, Zeng F L, Wang Q, Zhu L, Li H Y, Guo N H, Chen H W. Photorespiration regulates carbon-nitrogen metabolism by magnesium chelatase D subunit in rice. J Agric Food Chem, 2020, 69: 112-125.
doi: 10.1021/acs.jafc.0c05809
[35] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N B, Xing Z P, Hu Y J, Cui P Y, Dai Q G, Zhang H C. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 41-53.
[36] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制. 作物学报, 2023, 49: 1630-1642.
doi: 10.3724/SP.J.1006.2023.22040
Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou-1540 and its physiological bases. Acta Agron Sin, 2023, 49: 1630-1642 (in Chinese with English abstract).
[37] 侯红乾, 林洪鑫, 刘秀梅, 冀建华, 刘益仁, 蓝贤瑾, 吕真真, 周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响. 作物学报, 2020, 46: 280-289.
doi: 10.3724/SP.J.1006.2020.82060
Hou H Q, Lin H X, Liu X M, Ji J H, Liu Y R, Lan X J, Lyu Z Z, Zhou W J. Influence of long-term fertilizer application on chlorophyll fluorescence characteristics and grain yield of double cropping late rice. Acta Agron Sin, 2020, 46: 280-289 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.82060
[38] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响. 作物学报, 2022, 48: 739-746.
doi: 10.3724/SP.J.1006.2022.12011
Wang Y, Chen Z X, Jiang D G, Zhang C K, Zha M R. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice. Acta Agron Sin, 2022, 48: 739-746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12011
[39] 李睿, 娄运生, 张震, 马莉, 李君. 节水灌溉和遮光强度对水稻生长发育的耦合影响. 中国农业气象, 2018, 39: 702-714.
doi: 10.3969/j.issn.1000-6362.2018.11.002
Li R, Lou Y S, Zhang Z, Ma L, Li J. Coupling effects of water-saving irrigation and shading intensity on growth and development for rice. Chin J Agrometeorol, 2018, 39: 702-714 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2018.11.002
[40] Mu X H, Chen Y L. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem, 2021, 158: 76-82.
doi: 10.1016/j.plaphy.2020.11.019
[41] François B, Thomas P, Marion L, Maria-Dolores P G, Quentin B, Jakub R, Stéphanie B M, Sylvie C, Remi L, Benoît P, Hanaé R, Nathalie L, José L G, Jessica B, Soulaiman S. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J Exp Bot, 2015, 66: 9.
[42] Wang F, Han T W, Song Q X, Ye W X, Song X G, Chu J F, Li J Y, Chen Z J. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell, 2020, 32: 3124-3128.
doi: 10.1105/tpc.20.00289
[43] 董桂春, 于小凤, 赵江宁, 居静, 田昊, 李进前, 张燕, 王余龙. 不同穗型常规籼稻品种氮素吸收利用的基本特点. 作物学报, 2009, 35: 2091-2100.
Dong G C, Yu X F, Zhao J N, Ju J, Tian H, Li J Q, Zhang Y, Wang Y L. General characteristics of nitrogen uptake and utilization in conventional indica rice cultivars with different panicle weight types. Acta Agron Sin, 2009, 35: 2091-2100 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.02091
[44] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34: 119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 119-125 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00119
[45] Zhang J, Zhang Y Y, Song N Y, Chen Q L, Sun H Z, Peng T, Huang S, Zhao Q Z. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J Integr Agric, 2021, 20: 1465-1473.
doi: 10.1016/S2095-3119(20)63311-1
[46] 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998, 12: 172-176.
Huang F S, Sun Z X, Hu P S, Tang S Q. Present situations and prospects for the research on rice grain quality forming. Chin J Rice Sci, 1998, 12: 172-176 (in Chinese with English abstract).
[47] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785-790.
Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of low light on grains growth and quality in rice. Acta Agron Sin, 2003, 29: 785-790 (in Chinese with English abstract).
[48] 陈莹莹, 胡星星, 陈京都, 杨雄, 马群, 陈乔, 葛梦婕, 戴其根. 氮肥水平对江苏早熟晚粳稻食味品质的影响及其品种间差异. 作物学报, 2012, 38: 2086-2092.
doi: 10.3724/SP.J.1006.2012.02086
Chen Y Y, Hu X X, Chen J D, Yang X, Ma Q, Chen Q, Ge M J, Dai Q G. Effect of nitrogen fertilizer application on eating quality of early-maturing late japonica rice in Jiangsu and its difference among varieties. Acta Agron Sin, 2012, 38: 2086-2092 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.02086
[49] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, 魏海燕, 黄丽芬, 陆阳, 唐闯, 戴琪星, 周苗, 孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 1208-1220.
doi: 10.3724/SP.J.1006.2019.82067
Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Wei H Y, Huang L F, Lu Y, Tang C, Dai Q X, Zhou M, Sun J Y. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208-1220 (in Chinese with English abstract).
[50] Hu W X, Chen J, Xu F, Chen L, Zhao J W. Study on crystalline, gelatinization and rheological properties of japonica rice flour as affected by starch fine structure. Int J Biol Macromol, 2020, 148:1232-1241.
doi: 10.1016/j.ijbiomac.2019.11.020
[51] Deng F, Li Q P, Chen H, Zeng Y L, Li B, Zhong X Y, Wang L, Ren W J. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage. Carbohydr Polym, 2021, 252: 117212.
doi: 10.1016/j.carbpol.2020.117212
[52] Dutta S S, Tyagi W, Rai M. Physiological and molecular response to low light intensity in rice: a review. Agric Rev, 2017, 38: 209-215.
[53] Zhang L X, Zhang C Q, Yan Y, Hu Z J, Wang K, Zhou J H, Zhou Y, Cao L M, Wu S J. Influence of starch fine structure and storage proteins on the eating quality of rice varieties with similar amylose contents. J Sci Food Agric, 2020, 101: 101.
doi: 10.1002/jsfa.v101.1
[54] 石吕, 张新月, 孙惠艳, 曹先梅, 刘建, 张祖建. 不同类型水稻品种稻米蛋白质含量与蒸煮食味品质的关系及后期氮肥的效应. 中国水稻科学, 2019, 33: 541-552.
doi: 10.16819/j.1001-7216.2019.9022
Shi L, Zhang X Y, Sun H Y, Cao X M, Liu J, Zhang Z J. Relationship of grain protein content with cooking and eating quality as affected by nitrogen fertilizer at late growth stage for different types of rice varieties. Chin J Rice Sci, 2019, 33: 541-552.
doi: 10.16819/j.1001-7216.2019.9022
[55] Xu Y J, Zhang W Y, Jian C Q, Wang W L, Li K, Tian Y F, Wang Z Q, Zhu K K, Chang Y J. The role of polyamines in regulating amino acid biosynthesis in rice grains. Food Energy Secur, 2021, 10: 1002.
[56] Noori Z, Qarluq A G, Kakar K, Abdiani S, Nawakht N A. Structural features of white-belly and white-core rice endosperm under scanning electron microscopic observation. Agric Res, 2022, 11: 615-620.
doi: 10.1007/s40003-022-00618-7
[57] 朱盈. 长三角地区软米粳稻品质特征及优质丰产氮高效协同的碳氮代谢机理. 扬州大学博士学位论文,江苏扬州, 2022.
Zhu Y. Quality Characteristics and Carbon and Nitrogen Metabolism Mechanism of Good Quality High Yield and High Nitrogen Efficiency of Soft Japonica Rice in Yangtze River Delta. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[4] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[5] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[6] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[7] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[8] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[9] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[10] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[11] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[12] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[13] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[14] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[15] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .