欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3029-3041.doi: 10.3724/SP.J.1006.2023.22061

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻卷叶等位突变体e202的鉴定和基因精细定位

周文期1,2(), 强晓霞3, 李思雨1, 王森4, 卫万荣1,*()   

  1. 1西南野生动植物资源保护重点实验室 / 西华师范大学生命科学学院, 四川南充 637000
    2甘肃省农业科学院作物研究所, 甘肃兰州 730070
    3甘肃省兰州市第四中学, 甘肃兰州 730050
    4陕西省畜牧产业试验示范中心, 陕西咸阳 713702
  • 收稿日期:2022-10-28 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-06-15
  • 通讯作者: 卫万荣, E-mail: weiwr18@126.com
  • 作者简介:E-mail: zhouwenqi850202@163.com
  • 基金资助:
    2020年甘肃省科协青年科技人才托举工程项目资助

Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice

ZHOU Wen-Qi1,2(), QIANG Xiao-Xia3, LI Si-Yu1, WANG Sen4, WEI Wan-Rong1,*()   

  1. 1Key Laboratory of Southwest China Wildlife Resources Conservation / College of Life Sciences, China West Normal University, Nanchong 637000, Sichuan, China
    2Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    3Lanzhou No. 4 High School, Lanzhou 730050, Gansu, China
    4Shaanxi Province Animal Husbandry Industry Experimental Demonstration Center, Xianyang 713702, Shaanxi, China
  • Received:2022-10-28 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-06-15
  • Supported by:
    Young Scientific and Technological Talents Support Project of Gansu Association for Science and Technology in 2020

摘要:

良好的叶片形态是保证作物产量因素之一, 一定程度的卷曲能够使水稻叶片保持直立、不下垂, 有利于改善群体的受光面积, 使其接收更多的光能, 提高光合利用率。利用EMS诱变水稻中花11成熟种子, 从M2后代中筛选到一个叶片内卷、挺直的突变体, 命名为e202。通过表型鉴定, 发现e202表现出多种缺陷表型, 与野生型中花11相比, 不定根数目减少、根长变短, 圆锥花序发育异常, 小花形态、花药、花粉形态有畸形, 育性极显著降低, 叶绿素含量显著升高, 气孔密度降低。树脂切片观察叶片结构, 与对照相比, 由于泡状细胞数目的增加和体积的减小, 导致叶片的卷曲。同时切片观察花药, e202中仅形成极少数花粉粒, 导致育性降低。我们通过图位克隆技术将候选基因定位到第10染色体440 kb的物理区域内, 对区间内基因分析和测序发现Os10g0562700 (LOC_Os10g41310)基因第4个外显子上, 第1935位置缺失了1个碱基G, 导致后续氨基酸错乱, 蛋白翻译提前终止。综上表明, e202REL2的一个新等位突变体, 本研究为揭示REL2参与水稻叶片卷曲和花的发育等提供了一定的理论基础。

关键词: 水稻, 卷叶, 抗旱性, 花发育, 基因精细定位

Abstract:

Good leaf morphology is one of the factors for ensuring crop yield. A certain degree of curling can keep rice leaves standing and not drooping, which is beneficial to improve the light area of the population, enabling it to receive more light energy and improve the photosynthetic efficiency. In this study, the mature seeds of ZH11 in rice were mutated by EMS, and a mutant named e202 with curly and straight leaves was screened from M2 progeny. Phenotypic identification showed that e202 exhibited a variety of defective phenotypes. Compared with the wild type Zhonghua 11 (ZH11), the length and number of adventitious roots were decreased, and the panicle development was abnormal. The morphology of floret, anther, and pollen was deformed, the fertility was significantly reduced, the chlorophyll content was significantly increased, and the stomatal density was decreased. The structure of the leaves was observed by resin sectioning. Compared with the control, the number of vesicular cells increased and the volume decreased, resulting in leaf curling. Meanwhile, the anthers were sliced and observed. Normal pollen could not be formed in e202 or only very few pollen grains were formed, resulting in reduced fertility. The candidate genes were located in the physical region of 440 kb on chromosome 10 by map-based cloning. Gene sequencing analysis within the interval revealed that one base G was missing in the 1935 position of the fourth exon of Os10g0562700 (LOC_Os10g41310) gene, which resulted in the subsequent amino acid confusion. Protein translation is terminated prematurely, and e202 is a novel allelic mutant of REL2. This study provides a theoretical basis for revealing the involvement of REL2 in leaf rolling and flower development in rice.

Key words: rice, rolled-leaf, drought resistance, flower development, fine mapping

表1

本研究使用的部分引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Use
e202-F ATGGGGTGCACGGCGTCGAAGG 基因克隆Gene cloning
e202-R CTACCGCACCGATCCAGCTCGCCT
InDel-1F TTATGTCAACCTTACAATT 基因定位Fine mapping
InDel-1R GCATACTGTATTCCTATATC
InDel-2F TTGCTTAGTGGTAAGCTATG
InDel-2R GGAGTTCTTGAAGAAACTCC
InDel-3F GTATGTTTGTGGAGTAATAT
InDel-3R CATGCAATGTGCCAAGAACC
InDel-4F GCATACGAATGTACTTGTGT
InDel-4R TGGAAGTATGCGTGGAATAT
InDel-5F CTCAAATCACTTATATTATG
InDel-5R GTGTAACCAGTAGAAGAATG
InDel-6F TGTATAATTTGTTGAGATGAG
InDel-6R GTAGATCTTGTGATATTGGAG
C10-1-F GATTCACGGGTCGATCTACT 基因定位Fine mapping
C10-1-R GTGTGGTGCCATGCCTAATG
C10-22-F CAAGTATAATAATACTTAGAG
C10-22-R GAGCAAGGCTAATAATACATC
C10-38-F GTTGAAGTGCTACAGGTATG
C10-38-R GCTTCCTCAGCCTTGATCTC
C10-45-F GTATTCGCACTCTCAAATGAG
C10-45-R CAAATTAAGTCACAGATAAGTG
C10-57-F CAAGAATTCTAAGAGCTCG
C10-57-R CGAGCTTATGCATAAGCTTTG
C10-72-F TAGGAGGAGCAGAAGGAATAG
C10-72-R CGATCGATCGTCTTCTTCCAC
TUB-F TTTCACTCTTGGTGTGAAGCAGAT 实时荧光定量PCR技术RT-PCR
TUB-R GACTTCCTTCACGATTTCATCGTAA
REL2-F TGATCATCGTGACTTCACAGGC 实时荧光定量PCR技术RT-PCR
REL2-R TCTACCAGACCACGGACTTGC

图1

e202和ZH11植株表型分析 A: 生长早期, e202比ZH11较矮, 叶片卷曲; B: e202与对照开花期植株高度一样; C: ZH11幼苗茎与叶之间夹角较大; D: e202茎与叶之间的夹角比ZH11小; E: e202苗期根系不发达, 不定根数目减少且变短; F: 左为ZH11叶, 中为e202微卷叶, 右为e202呈卷筒状叶片; G: F2代植株, e202矮化, 卷叶。A, B, G: 标尺为10 cm; C, D, E, F: 标尺为1 cm."

图2

e202部分稻穗的突变表型 A, E: ZH11完整的穗花结构; B~D, F~L: e202; A: ZH11拨开外稃和內稃的小穗结构; B~D: e202拨开颖壳, 外稃和内稃数均增加; F~H: e202稻壳的多种畸变表型; I~L: e202缺失雄蕊和雌蕊的畸变结构, 用星号标出。标尺为0.1 cm。"

图3

e202部分花及花粉的突变表型 A, I: ZH11; B~H, J~L: e202; A: ZH11外稃和內稃的花的解剖图; B~D: e202, 2个雌蕊; E~H: e202雄蕊、柱头和桨片的畸变结构; I: ZH11的花药结构; J~L: e202花粉畸变结构, e202不同形态花药, 育性降低。A~H: 标尺为 0.05 cm; I~L: 标尺为0.01 cm。"

图4

各种花器官的数目统计 A: 雄蕊; B: 雌蕊; C: 柱头; D: 桨片; E: 外稃; F: 内稃。对照统计50个花, e202统计150个花。n = 50/150。"

图5

ZH11与e202花粉染色及花药的横切图 A: ZH11开花; B: e202不开花, 散粉期颖壳不开; C: ZH11花药及花粉粒; D: e202花药及花粉, 少量花粉粒; E: ZH11成熟种子饱满; F:大多数e202种子干瘪、不饱满; G, H: ZH11和e202经过0.1%的碘-碘化钾染色的花粉; e202能被染色花粉极少; I, J: ZH11花药横切图; K, L: e202花药横切图, e202中几乎没有饱满的花粉粒。A~D: 标尺为1 cm; E~H: 标尺为100 μm。"

图6

e202和ZH11叶片横切面 A~C: ZH11; D~F: e202。A, D: 剑叶中大维管束结构, 箭头表示薄壁组织细胞, 小三角型表示e202中缺失或减少的厚壁组织细胞层; B, E: 剑叶中小维管束结构, 箭头表示维管束; C, F: 泡状细胞, e202中泡状细胞较对照数目增多体积变小。"

图7

ZH11和e202叶片叶绿素含量测定 *表示与对照有显著性差异, P < 0.05; **表示与对照有极显著性差异, P < 0.01。"

表2

F2群体中正常植株和卷叶植株的分离比检测"

群体
Population
总株数
Total plant number
正常表型
Normal phenotype
矮化表型
Dwarfing phenotype
期望分离比
Segregation ratio
P
P-value
χ2
(ZH11×e202) F2 560 433 127 3﹕1 0.21 1.731

图8

候选基因初步定位和精细定位图 A: 候选基因初步定位和精细定位遗传图谱; B: 候选基因结构图; C: REL2基因在ZH11和e202中的相对表达量。“n”表示定位分析所用到F2突变单株数。"

[1] 邓秋雨, 肖应辉. 水稻卷叶类型及调控机制研究进展. 作物研究, 2021, 35: 376-384.
Deng Q Y, Xiao Y H. Research progress on types and regulation mechanism of rice rolled leaf. Crop Res, 2021, 35: 376-384 (in Chinese with English abstract).
[2] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
doi: 10.1105/tpc.108.061457
[3] 沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009, 7: 852-860.
Shen N W, Qian Q, Zhang G H. Research progress on rice rolled leaf and its application in breeding program. Mol Plant Breed, 2009, 7: 852-860 (in Chinese with English abstract).
[4] 黄州, 杜志喧, 王建平, 李剑镔, 鲍建中, 任伟芳, 傅军如. 水稻卷叶性状与分子调控机制研究进展. 分子植物育种, 2021, 19: 7604-7611.
Huang Z, Du Z X, Wang J P, Li J B, Bao J Z, Ren W F, Fu J R. Research progress on rolled leaf traits and molecular regulation mechanism in rice (Oryza sativa). Mol Plant Breed, 2021, 19: 7604-7611 (in Chinese with English abstract).
[5] Zhang J J, Wu S Y, Jiang L, Wang J L, Zhang X, Guo X P, Wu C Y, Wan J M. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.). Plant Biol, 2015, 17: 437-438.
doi: 10.1111/plb.12255
[6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
doi: 10.1093/mp/ssq022
[7] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
doi: 10.1104/pp.111.176016
[8] Xiang J J, Zhang G H, Qian Q, Xue H W. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
doi: 10.1104/pp.112.199968
[9] Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C G, Wang J L, Zhang G Q, Zhang Z M. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015, 66: 6047-6058.
doi: 10.1093/jxb/erv319
[10] Yang S Q, Li W Q, Miao H, Gan J F, Qiao L, Chang Y L, Shi C H, Chen C M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
doi: 10.1186/s12284-016-0105-6
[11] Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, Shi C H, Chen K M. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J, 2017, 92: 904-923.
doi: 10.1111/tpj.13728
[12] Wang H M, Shi Y F, Zhang X B, Xu X, Wu J L. Characterization of a novel rice dynamic narrow-rolled leaf mutant with deficiencies in aromatic amino acids. Int J Mol Sci., 2020, 21: 1521.
doi: 10.3390/ijms21041521
[13] 李战朋. 水稻卷叶突变体zw235的基因克隆与功能分析. 中国农业科学院硕士学位论文,北京, 2016.
Li Z P. Map-based Cloning and Function Analysis of a Rolled Leaf Mutant zw235in Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[14] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507.
doi: 10.1007/s00438-008-0328-3 pmid: 18293011
[15] Woo Y M, Park H J, Su'udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
doi: 10.1007/s11103-007-9203-6
[16] Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283-292.
doi: 10.1007/s11103-010-9614-7
[17] Wu C, Fu Y P, Hu G C, Si H M, Cheng S H, Liu W Z. Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta, 2010, 232: 313-324.
doi: 10.1007/s00425-010-1180-3 pmid: 20443024
[18] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/j.1467-7652.2012.00679.x pmid: 22329407
[19] Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res, 2010, 20: 935-947.
doi: 10.1038/cr.2010.109
[20] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
doi: 10.1007/s00425-013-2009-7
[21] Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J I, Nagato Y. The ADAXIALIZED LEAF1gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345-354.
doi: 10.1016/j.ydbio.2009.07.042
[22] Itoh J, Hibara K, Sato Y, Nagato Y. Developmental role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol, 2008, 147: 1960-1975.
doi: 10.1104/pp.108.118679
[23] Zhang J S, Zhang H, Kumar S A, Pan Y J, Bai J J, Fang J J, Shi H Z, Zhu J K. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol, 2018, 176: 2082-2094.
doi: 10.1104/pp.17.01432 pmid: 29367235
[24] 周文期, 寇思荣, 连晓荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 周玉乾. 水稻和玉米叶表皮突变体的筛选和鉴定. 植物生理学报, 2020, 56: 189-199.
Zhou W Q, Kou S R, Lian X R, Yang Y Z, Liu Z X, Wang X J, He H J, Zhou Y Q. Screening and identification of leaf epidermal mutants in rice and maize. Plant Physiol J, 2020, 56: 189-199 (in Chinese with English abstract).
doi: 10.1111/ppl.1982.56.issue-2
[25] 王峰, 徐飚, 杨正林, 凌英华, 何光华, 陈胜, 卿明敬, 桑贤春. EMS诱变水稻矮生资源的鉴定评价. 核农学报, 2011, 25: 197-201.
doi: 10.11869/hnxb.2011.02.0197
Wang F, Xu B, Yang Z L, Ling Y H, He G H, Chen S, Qing M J, Sang X C. Identification and analysis of EMS induced dwarf mutants in rice. Acta Agric Nucl Sin, 2011, 25: 197-201 (in Chinese with English abstract).
[26] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究. 作物学报, 2022, 48: 1401-1415.
doi: 10.3724/SP.J.1006.2022.12032
Zhou W Q, Qiang X X, Wang S, Jiang J W, Wei W R. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice. Acta Agron Sin, 2022, 48: 1401-1415 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12032
[27] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983, 11: 591-592.
doi: 10.1042/bst0110591
[28] 周文期. 调控水稻叶表皮发育的LPL2和DSP1基因克隆与功能分析. 兰州大学博士学位论文,甘肃兰州, 2015.
Zhou W Q. The Cloning and Functional Analysis of LPL2 and DSP1, two Genes, that Regulate the Epidermal Cell Development in Rice. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2015 (in Chinese with English abstract).
[29] 王艺程, 张世杰, 丁寒雪, 蒋成娣, 张浠然, 张志国, 刘翔. 甲基磺酸乙酯(EMS) 在植物诱变育种中的应用. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220719.1519.016.html.
Wang Y C, Zhang S J, Ding H X, Jiang C D, Zhang X R, Zhang Z G, Liu X. Application of Ethyl Methanesulfonate (EMS) in plant mutation breeding. Mol Plant Breed, 2022, (on line). https://kns.cnki.net/kcms/detail/46.1068.S.20220719.1519.016.html (in Chinese with English abstract).
[30] 周文期, 周玉乾, 刘忠祥, 连晓荣, 王晓娟, 何海军, 杨彦忠, 寇思荣. 12C6+重离子束辐照玉米后代的生物学效应. 核农学报, 2019, 33: 2311-2318.
doi: 10.11869/j.issn.100-8551.2019.12.2311
Zhou W Q, Zhou Y Q, Liu Z X, Lian X R, Wang X J, He H J, Yang Y Z, Kou S R. Biological effects of offspring of maize irradiated by 12C6+ heavy ion beam. Acta Agric Nucl Sin, 2019, 33: 2311-2318 (in Chinese with English abstract).
[31] 周文期, 周玉乾, 李永生, 何海军, 杨彦忠, 王晓娟, 连晓荣, 刘忠祥, 胡筑兵. 玉米ZmICE2基因调控气孔发育过程. 植物学报, 2023, DOI: 10.11983/CBB22261.
doi: 10.11983/CBB22261
Zhou W Q, Zhou Y Q, Li Y S, He H J, Yang Y Z, Wang X J, Lian X R, Liu Z X, Hu Z B. ZmICE2 regulates stomatal development in maize. Chin Bull Bot, 2023, DOI: 10.11983/CBB22261.
doi: 10.11983/CBB22261
[32] 周文期, 张贺通, 何海军, 龚佃明, 杨彦忠, 刘忠祥, 李永生, 王晓娟, 连晓荣, 周玉乾, 邱法展. 调控玉米株高和穗位高候选基因Zmdle1的定位. 中国农业科学, 2023, 56: 821-837.
doi: 10.3864/j.issn.0578-1752.2023.05.002
Zhou W Q, Zhang H T, He H J, Gong D M, Yang Y Z, Liu Z X, Li Y S, Wang X J, Lian X R, Zhou Y Q, Qiu F Z. Candidate gene localization of ZmDLE1 gene regulating plant height and ear height in maize. Sci Agric Sin, 2023, 56: 821-837 (in Chinese with English abstract).
[33] 叶俊, 吴建国, 杜婧, 郑希, 张志, 石春海. 水稻“9311”突变体筛选和突变体库构建. 作物学报, 2006, 32: 1525-1529.
Ye J, Wu J G, Du J, Zheng X, Zhang Z, Shi C H. The screening of mutants and construction of mutant population for cultivar “9311” in rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 1525-1529 (in Chinese with English abstract).
[34] Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. Gene-indexed mutations in maize. Mol Plant, 2018, 11: 496-504.
doi: S1674-2052(17)30368-4 pmid: 29223623
[35] 周文期, 连晓荣, 周玉乾, 王兴荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 寇思荣. EMS诱变玉米自交系种质创新应用. 玉米科学, 2020, 28(6): 31-38.
Zhou W Q, Lian X R, Zhou Y Q, Wang X R, Yang Y Z, Liu Z X, Wang X J, He H J, Kou S R. Innovative application of EMS mutagenesis germplasm of maize inbred lines. J Maize Sci, 2020, 28(6): 31-38 (in Chinese with English abstract).
[36] 黄益安, 邓小娟, 万海波, 王朋, 方小龙, 张杰, 杨存义. 大豆华夏3号突变体库构建及SSR分子标记. 中国油料作物学报, 2016, 38: 159-166.
Huang Y A, Deng X J, Wan H B, Wang P, Fang X L, Zhang J, Yang C Y. Mutagenesis and SSR markers of soybean cultivar Huaxia 3. Chin J Oil Crop Sci, 2016, 38: 159-166 (in Chinese with English abstract).
[37] Shi X L, Cui F, Han X Y, He Y L, Zhao L, Zhang N, Zhang H, Zhu H D, Liu Z X, Ma B, Zheng S S, Zhang W, Liu J J, Fan X L, Si Y Q, Tian S Q, Niu J Q, Wu H L, Liu X M, Chen Z, Meng D Y, Wang X Y, Song L Q, Sun L J, Han J, Zhao H, Ji J, Wang Z G, He X Y, Li R L, Chi X B, Liang C Z, Niu B F, Xiao J, Li J M, Ling H Q. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant, 2022, 15: 1440-1456.
doi: 10.1016/j.molp.2022.07.008
[38] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[39] 周文期, 刘忠祥, 王晓娟, 何海军, 周玉乾, 杨彦忠, 连晓荣, 李永生. 利用BSA-Seq方法快速定位作物农艺性状QTL/基因概述. 甘肃农业科技, 2022, 53(4): 1-10.
Zhou W Q, Liu Z X, Wang X J, He H J, Zhou Y Q, Yang Y Z, Lian X R, Li Y S. Rapid mapping of QTL/gene for agronomic traits in crops using BSA-seq method. Gansu Agric Sci Technol, 2022, 53(4): 1-10 (in Chinese with English abstract).
[40] 李蓓, 莫凯琴, 马银花. 水稻卷叶基因研究进展. 安徽农学通报, 2021, 27(6): 14-18.
Li B, Mo K Q, Ma Y H. Advances in gene research of rice roll leaf. Anhui Agric Sci Bull, 2021, 27(6): 14-18 (in Chinese with English abstract).
[41] Li M, Li X Z, Zhu L, Xue P B, Bao J L, Zhou B B, Jin J, Wang J. Genome-wide transcriptomic analysis reveals the gene regulatory network that controlled by SRL1 in regulating rice leaf rolling. J Plant Growth Regul, 2022, 41: 2292-2304.
doi: 10.1007/s00344-021-10443-x
[42] 葛倩雯, 金宝花, 傅小进, 顾志敏, 陈析丰, 马伯军. 水稻卷叶矮化突变体rld的表型鉴定及基因精细定位. 浙江师范大学学报(自然科学版), 2019, 42: 434-440.
Ge Q W, Jin B H, Fu X J, Gu Z M, Chen X F, Ma B J. Phenotypic identification and gene-fine mapping of a rolling leaf and dwarf mutant rld in rice. J Zhejiang Normal Univ (Nat Sci Edn), 2019, 42: 434-440 (in Chinese with English abstract).
[43] 张谷禹, 唐诗闻, 吴凡, 向威, 黎腊梅, 陈永军, 邹挺, 彭友林, 胡运高. 水稻卷叶半不育突变体的鉴定及初步遗传分析. 杂交水稻, 2019, 34(5): 46-50.
Zhang G Y, Tang S W, Wu F, Xiang W, Li L M, Chen Y J, Zou T, Peng Y L, Hu Y G. Identification and preliminary genetic analysis of a leaf-rolling and semi-sterile mutant in rice. Hybrid Rice, 2019, 34(5): 46-50 (in Chinese with English abstract).
[44] 韩保林, 陶宇, 张洪凯, 顾朝剑, 廖泳祥, 彭永彬, 张红宇, 徐培洲, 陈晓琼, 吴先军. 水稻叶片内卷突变体rl(t)的鉴定与基因定位. 中国水稻科学, 2017, 31: 149-156.
doi: 10.16819/j.1001-7216.2017.6137
Han B L, Tao Y, Zhang H K, Gu C J, Liao Y X, Peng Y B, Zhang H Y, Xu P Z, Chen X Q, Wu X J. Identification and gene mapping of a rolled leaf mutant rl(t) in rice. Chin J Rice Sci, 2017, 31: 149-156 (in Chinese with English abstract).
[45] Wen X X, Sun L P, Chen Y Y, Xue P, Yang Q Q, Wang B F, Yu N, Cao Y R, Zhang Y, Gong K, Wu W X, Chen D B, Cao L Y, Cheng S H, Zhang Y X, Zhan X D. Rice Dwarf and low tillering 10 (OsDLT10) regulates tiller number by monitoring auxin homeostasis. Plant Sci, 2020, 297: 110502.
doi: 10.1016/j.plantsci.2020.110502
[46] Yu Q, Chen L, Zhou W Q, An Y H, Luo T X, Wu Z L, Wang Y Q, Xi Y F, Yan L F, Hou S W. RSD1 is essential for stomatal patterning and files in rice. Front Plant Sci, 2020, 11: 600021.
doi: 10.3389/fpls.2020.600021
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[5] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[6] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[7] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[8] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[9] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[10] 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583.
[11] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[12] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[13] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[14] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[15] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .