欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3017-3028.doi: 10.3724/SP.J.1006.2023.31003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

波兰小麦在青藏高原饲用性能的评价

赵彩霞1,2,3(), 沈吉成1,2(), 尹淑香1,2,3, 叶发慧1,2,3, 杨淼思4, 刘瑞娟1,2, 刘德梅1,2, 张怀刚1,2, 沈裕虎1,2, 陈文杰1,2,*()   

  1. 1中国科学院高原生物适应与进化重点实验室 / 中国科学院西北高原生物研究所 / 中国科学院种子创新研究院, 青海西宁 810008
    2青海省作物分子育种重点实验室, 青海西宁 810008
    3中国科学院大学, 北京 100049
    4青海大学, 青海西宁 810016
  • 收稿日期:2023-01-06 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-08
  • 通讯作者: 陈文杰, E-mail: wjchen@nwipb.cas.cn
  • 作者简介:赵彩霞, E-mail: 1379572449@qq.com;
    沈吉成, E-mail: 1911561480@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    青海省重点研发与转化计划项目(2022-NK-106);中国科学院战略性先导科技专项(XDA24030102);第二次青藏高原综合科学考察研究(STEP)项目(2019QZKK0303);中国科学院青年创新促进会项目(2019420);青海省创新平台建设项目(2022-ZJ-Y01);青海省创新平台建设项目(2022-ZJ-Y04)

Evaluation of the forage performance of polish wheat on the Qinghai-Tibet Plateau

ZHAO Cai-Xia1,2,3(), SHEN Ji-Cheng1,2(), YIN Shu-Xiang1,2,3, YE Fa-Hui1,2,3, YANG Miao-Si4, LIU Rui-Juan1,2, LIU De-Mei1,2, ZHANG Huai-Gang1,2, SHEN Yu-Hu1,2, CHEN Wen-Jie1,2,*()   

  1. 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining 810008, Qinghai, China
    2Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
    3University of Chinese Academy of Sciences, Beijing 100049, China
    4Qinghai University, Xining 810016, Qinghai, China
  • Received:2023-01-06 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-08
  • About author:First author contact:

    **Contributed equally to this study

  • Supported by:
    Project of Qinghai Science and Technology Department(2022-NK-106);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24030102);Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK0303);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019420);Construction Project for Innovation Platform of Qinghai Province(2022-ZJ-Y01);Construction Project for Innovation Platform of Qinghai Province(2022-ZJ-Y04)

摘要:

青藏高原是世界典型的高寒牧区, 气候寒冷干燥, 生态环境脆弱, 天然草原初级生产力水平低下, 人工草场现有适宜草种单一, 品质较差, 难以满足放牧家畜的营养需求, 急需筛选和培育适宜该地区种植的优质饲用作物。本研究对40份波兰小麦饲用相关性状进行了测定, 运用熵权法对测定指标进行了权重确定, 采用灰色关联度进行了综合评价, 以期筛选出适宜青藏高原等高寒牧区种植的波兰小麦优异饲用种质资源。主要研究结果如下: (1) 供试材料籽粒产量权重最高为7.04%, 开花期鲜草产量次之为6.98%, 同时籽粒和鲜草产量变异系数(%)均较高, 分别为28.57%和22.26%; (2) 饲用品质分析表明, 供试波兰小麦植株、籽粒中粗蛋白含量均较高, 分别为23.86%和20.28%, 植株ADF、NDF含量较低; (3) 关联分析表明, 综合评价较高的3个品种分别为来自阿根廷的9号、来自埃塞俄比亚的18号和来自罗马尼亚的20号, 其中20号综合评价最高为0.635, 18号为0.617, 9号为0.607。上述综合评价较高、饲用性状较突出的材料可作为筛选和培育青藏高原等高寒牧区高蛋白含量优质禾本科牧草的良好供试材料。

关键词: 波兰小麦, 饲草产量, 籽粒产量, 饲用品质, 青藏高原

Abstract:

The Qinghai-Tibet Plateau is a typical alpine grazing area in the world, which is cold and arid, with fragile ecological environment, low level of primary productivity of natural grasslands, single suitable grass species for artificial pastures, and low quality, which can hardly suit the nutritional needs of grazing livestock. It is urgent to screen and cultivate high-quality forage crops. The objective of this study is to measure the forage traits of 40 polish wheat (Triticum polonicum L.), the entropy weighting method was applied to determine the weights of the measurement indicators, and use the gray correlation degree for a multivariate evaluation, to identify excellent forage germplasm resources of polish wheat varieties most suitable for planting in Qinghai. The main findings were as follows: (1) The grain yield of the test material had the highest weight of 7.04%, followed by 6.98% for fresh grass yield at flowering stage, also the coefficients of variation of grain and fresh forage yield were higher at 28.57% and 22.26%, respectively. (2) The forage quality analysis showed that the crude protein content of the plant and grain were higher by 23.86% and 20.28%, respectively. The acid detergent fibers and neutral detergent fiber of the plant were lower. (3) The multivariate evaluation of multiple indicators of the polish wheat revealed that three varieties with the best multivariate score among the 40 different Polish wheat were No. 9 from Argentina, No. 18 from Ethiopia, and No. 20 from Romania, and the highest multivariate score was 0.635 for No. 20, followed by 0.617 for No. 18, and 0.607 for No. 9. The materials with higher multivariate score of the test varieties and more outstanding forage traits can be the excellent test materials for the screening and breeding high quality forage grasses with high protein content on the Qinghai-Tibet Plateau according to production needs.

Key words: Polish wheat, forage yield, grain yield, forage quality, Qinghai-Tibetan Plateau

表1

供试波兰小麦品种"

序号No. 名称Name 来源地Origin 序号No. 名称Name 来源地Origin
1 PI29447 乌克兰Ukraine 21 CItr13919 埃塞俄比亚Ethiopia
2 PI384265 埃塞俄比亚Ethiopia 22 PI566593-1 美国USA
3 PI384345 埃塞俄比亚Ethiopia 23 PI272565-1 匈牙利Hungary
4 PI290512 葡萄牙Portugal 24 PI272565 匈牙利Hungary
5 PI225334 伊朗Iran 25 PI352488-1 意大利Italy
6 PI190951 葡萄牙Portugal 26 PI210845-1 伊朗Iran
7 CItr14140 未知Unknown 27 PI210845 伊朗Iran
8 PI387479 埃塞俄比亚Ethiopia 28 PI566593 美国USA
9 PI185309 阿根廷Argentina 29 PI384340-1 埃塞俄比亚Ethiopia
10 PI608017 美国USA 30 PI384340 埃塞俄比亚Ethiopia
11 PI266846 英国UK 31 PI352489-1 塞浦路斯Cyprus
12 PI191823 葡萄牙Portugal 32 PI56261 葡萄牙Portugal
13 PI366117 约旦Jordan 33 PI306548 罗马尼亚Romania
14 PI384268 未知Unknown 34 PI352489 塞浦路斯Cyprus
15 PI352487 葡萄牙Portugal 35 PI387457-1 葡萄牙Portugal
16 PI352488 澳大利亚Australia 36 PI387457 埃塞俄比亚Ethiopia
17 PI42209 匈牙利Hungary 37 PI56261-1 埃塞俄比亚Ethiopia
18 CItr13919-1 埃塞俄比亚Ethiopia 38 CItr17442 美国USA
19 PI298572-1 埃塞俄比亚Ethiopia 39 CItr17442-1 美国USA
20 PI306548-1 罗马尼亚Romania 40 CItr298572 埃塞俄比亚Ethiopia

表2

供试波兰小麦农艺性状变化"

指标
Index
株高
Plant height (cm)
穗长
Spike length (cm)
穗颈节长
SNL (cm)
分蘖
Tiller number
籽粒粗蛋白
GCP (%)
千粒重
1000-grain weight (g)
平均值Mean 134.84 12.49 57.43 22.80 20.28 47.26
最大Max. 159.79 17.86 68.47 35.64 23.72 63.32
最小Min. 99.42 7.00 43.67 8.37 17.17 30.37
变异系数CV (%) 11.15 20.34 10.12 28.51 7.61 17.84

图1

供试波兰小麦农艺性状的变化"

表3

供试波兰小麦饲草产量变化"

序号
No.
花期Flower 收获Harvest 序号
No.
花期Flower 收获Harvest
鲜草产量
Fresh forage yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
鲜草产量
Fresh forage
yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
1 6.98 ab 2.43 ab 1.86 bc 23 3.83 defg 1.31 efghijk 1.52 cdefghi
2 7.95 a 2.71 a 1.26 defghijk 24 3.45 efg 1.14 hijk 1.49 cdefghi
3 4.73 bcdefg 1.90 bcdefgh 1.05 hijk 25 4.99 bcdefg 1.68 cdefghijk 1.24 defghijk
4 4.84 bcdefg 1.93 bcdefg 1.23 defghijk 26 3.34 fg 1.16 ghijk 1.52 cdefghi
5 3.04 fg 1.25 fghijk 1.37 cdefghij 27 4.09 defg 1.05 k 1.48 cdefghij
6 4.28 defg 1.45 defghijk 1.50 cdefghi 28 3.79 defg 1.49 defghijk 1.44 cdefghij
7 3.94 defg 1.10 jk 1.64 cdefg 29 4.65 bcdefg 1.36 defghijk 2.26 ab
8 3.19 fg 1.16 ghijk 1.28 defghijk 30 3.75 defg 1.20 ghijk 1.72 cd
9 6.00 abcde 1.88 bcdefghi 1.71 cde 31 3.86 defg 1.34 efghijk 1.70 cde
10 5.40 bcdef 1.80 bcdefghijk 1.53 cdefghi 32 4.61 bcdefg 2.01 bcdefg 1.65 bcdefg
11 7.01 ab 1.49 defghijk 1.50 defghijk 33 4.39 cdefg 1.69 cdefghijk 1.29 cdefghijk
12 3.56 efg 1.18 ghijk 1.19 ghijk 34 2.44 g 1.14 hijk 1.34 cdefghijk
13 3.64 defg 1.41 defghijk 0.96 ijk 35 3.26 fg 1.41 defghijk 1.13 efghijk
14 3.26 fg 1.03 k 0.90 jk 36 4.46 cdefg 2.03 bcde 1.16 defghijk
15 3.38 fg 1.26 efghijk 0.97 ijk 37 3.00 fg 1.13 ijk 1.07 ghijk
16 3.68 defg 1.08 k 0.80 k 38 3.53 efg 1.39 defghijk 1.25 defghijk
17 3.56 efg 1.19 ghijk 1.06 ghijk 39 3.38 fg 1.40 defghijk 1.08 fghijk
18 6.79 abc 2.24 abc 1.74 cd 40 4.05 defg 2.11 abcd 1.07 ghijk
19 6.15 abcd 1.85 bcdefghij 1.43 cd 平均值Mean 4.36 1.52 1.41
20 4.95 bcdefg 1.78 bcdefghijk 2.69 a Max. 7.95 2.71 2.69
21 4.39 cdefg 1.20 ghijk 1.68 cde Min. 2.44 1.03 0.80
22 4.76 bcdefg 1.45 defghijk 1.58 cdefgh CV (%) 28.57 27.13 25.87

表4

供试波兰小麦籽粒产量变化"

序号
No.
籽粒产量
Grain yield (kg hm-2)
收获指数
Harvest index
序号
No.
籽粒产量
Grain yield (kg hm-2)
收获指数
Harvest index
1 406.26 bcdefghij 0.22 f 23 320.48 hijk 0.21 g
2 460.19 abcde 0.37 b 24 314.95 hijkl 0.21 g
3 338.96 fghijk 0.32 b 25 307.48 ijkl 0.25 e
4 477.84 abcd 0.39 ab 26 307.23 ijkl 0.20 g
5 487.61 abc 0.36 b 27 331.56 ghijk 0.22 fg
6 447.45 bcdefg 0.30 cd 28 377.55 cdefghij 0.26 e
7 572.75 a 0.35 b 29 519.67 ab 0.23 ef
8 486.45 abc 0.38 b 30 351.15 efghijk 0.20 g
9 515.92 ab 0.30 cd 31 494.92 abc 0.29 cd
10 431.13 bcdefgh 0.28 d 32 289.16 ijkl 0.18 h
11 453.27 bcdef 0.30 cd 33 317.23 hijk 0.25 ef
12 324.05 hijk 0.27 d 34 247.25 kl 0.19 gh
13 356.38 efghijk 0.37 b 35 453.37 bcdef 0.40 a
14 336.06 fghijk 0.37 b 36 463.47 abcde 0.40 a
15 291.08 ijkl 0.30 cd 37 403.85 bcdefghij 0.38 b
16 284.39 jkl 0.36 b 38 385.58 cdefghij 0.31 cd
17 359.99 defghijk 0.34 b 39 329.77 ghijk 0.31 cd
18 452.38 bcdefg 0.26 e 40 298.61 ijkl 0.28 d
19 462.39 abcde 0.32 b 平均值Mean 388.85 0.29
20 486.18 abc 0.18 h Max. 572.75 0.40
21 410.02 bcdefghi 0.24 ef Min. 200.11 0.13
22 200.11 l 0.13 i CV (%) 22.26 24.85

表5

供试波兰小麦饲用品质变化"

指标
Index
叶Leaf 茎秆Stem
ADF NDF CP ADF NDF CP
平均值Mean 40.79 59.45 23.86 43.71 58.47 7.58
最大值Max. 49.30 66.46 27.94 50.92 65.48 12.98
最小值Min. 30.51 50.22 16.33 30.03 49.60 4.04
变异系数CV (%) 9.59 7.31 9.59 10.36 8.08 28.94

图2

供试波兰小麦植株饲用品质变化"

图3

供试波兰小麦不同农艺性状间相关性分析 不同颜色表示各指标间相关性, 颜色深表示二者相关性较高, 颜色浅则反之。"

表6

供试波兰小麦各指标权重及排名"

指标
Index
权重
Weight (%)
排名Rank 指标
Index
权重
Weight (%)
排名
Rank
株高Plant height 6.88 4 籽粒粗蛋白Grain crude protein 6.37 8
穗长Spike length 6.52 5 籽粒产量Grain yield 7.04 1
穗颈节长Spike stem nodes length 6.88 4 叶片粗蛋白Crude protein (leaf) 6.37 7
分蘖Tiller 5.31 14 叶片酸性洗涤纤维Acid detergent fibe (leaf) 5.77 12
花期鲜草产量Fresh forage yield (flower) 6.98 2 叶片中性洗涤纤维Neutral detergent fiber (leaf) 6.45 6
花期干草产量Dry forage yield (flower) 6.96 3 茎秆粗蛋白Crude protein (stem) 6.30 9
收获期干草产量Dry forage yield (harvest) 5.59 13 茎秆酸性洗涤纤维Acid detergent fibe (stem) 4.91 15
千粒重1000-grain weight 5.83 11 茎秆中性洗涤纤维Neutral detergent fiber (stem) 6.22 10

表7

供试波兰小麦加权关联度及排名"

序号
No.
加权关联度
Weighted relevance
排名
Rank
序号
No.
加权关联度
Weighted relevance
排名
Rank
1 0.490 21 21 0.507 19
2 0.545 12 22 0.545 12
3 0.407 31 23 0.522 14
4 0.564 8 24 0.507 19
5 0.508 18 25 0.547 11
6 0.482 23 26 0.446 27
7 0.572 6 27 0.573 5
8 0.420 30 28 0.550 10
9 0.607 3 29 0.510 16
10 0.560 9 30 0.470 25
11 0.602 4 31 0.533 13
12 0.494 20 32 0.390 32
13 0.451 26 33 0.568 7
14 0.432 30 34 0.521 15
15 0.483 22 35 0.347 35
16 0.341 36 36 0.445 28
17 0.389 33 37 0.424 29
18 0.617 2 38 0.479 24
19 0.568 7 39 0.350 34
20 0.635 1 40 0.509 17
[1] 李祥妹, 彭元柳, 岳洁. 旅游产业发展背景下高寒牧区退化草地生态治理途径. 草业科学, 2019, 36: 1435-1444.
Li X M, Peng Y L, Yue J. Ecological management pathways of degraded grasslands in alpine pasture areas in the context of tourism industry development. Pratac Sci, 2019, 36: 1435-1444 (in Chinese with English abstract).
[2] 董全民, 赵新全, 马玉寿. 江河源区高寒草地畜牧业现状及可持续发展策略. 农业现代化研究, 2007, 28: 438-442.
Dong Q M, Zhao X Q, Ma Y S. Current situation and sustainable development strategy of alpine grassland animal husbandry in the river source area. Agric Mod Res, 2007, 28: 438-442 (in Chinese with English abstract).
[3] 陈鹏飞, 李潮流, 康世昌, 张强弓, 郭军明, 米决, 巴桑普赤, 洛桑曲珍. 青藏高原纳木错和安多牧区室内空气污染研究. 环境科学, 2011, 32: 1231-1236.
Chen P F, Li C L, Kang S C, Zhang Q G, Guo J M, Mi J, Basang P C, Luosang Q Z. Indoor air pollution in the Nam Co and Ando Regions in the Tibetan Plateau. Environ Sci, 2011, 32: 1231-1236 (in Chinese with English abstract).
[4] 彦星, 郑群英, 晏兆莉, 卢涛. 气候变化背景下草原产权制度变迁对畜牧业的影响——以青藏高原东缘牧区为例. 草业科学, 2015, 32: 1687-1694.
Yan X, Zheng Q Y, Yan Z L, Lu T. The impact of changes in grassland property rights system on livestock farming in the context of climate change: a case study of pastoral areas on the eastern edge of the Qinghai-Tibet Plateau. Pratac Sci, 2015, 32: 1687-1694 (in Chinese with English abstract).
[5] 张秀云, 姚玉璧, 邓振镛, 尹东, 王润元, 陈昌平. 青藏高原东北边缘牧区气候变化及其对畜牧业的影响. 草业科学, 2007, 24: 66-73.
Zhang X Y, Yao Y B, Deng Z Y, Yin D, Wang R Y, Chen C P. Climate change and its impact on animal husbandry in the northeastern margin of the Qinghai-Tibet Plateau. Pratac Sci, 2007, 24: 66-73 (in Chinese with English abstract).
[6] 刘振恒, 武高林, 仁青草, 巩晓兰, 靳瑞芳, 刘明清. 发展以燕麦为支柱产业的可持续高寒草地畜牧业. 草业科学, 2007, 24: 67-69.
Liu Z H, Wu G L, Ren Q C, Gong X L, Jin R F, Liu M Q. Development of sustainable alpine grassland animal husbandry with oats as the pillar industry. Pratac Sci, 2007, 24: 67-69 (in Chinese with English abstract).
[7] 王东霞, 王伟, 李春喜, 宗渊, 曹东, 刘宝龙. 青海省不同海拔生态区饲用小黑麦生产性能分析. 分子植物育种, 2020, 18: 6216-6228.
Wang D X, Wang W, Li C X, Zong Y, Cao D, Liu B L. Analysis of production performance of forage triticale in different altitude ecological zones in Qinghai province. Mol Plant Breed, 2020, 18: 6216-6228 (in Chinese with English abstract).
[8] 唐剑, 刘晓鹰, 陈祥碧. 青藏高原藏族牧区畜牧业发展问题研究——以阿坝州若尔盖县为例. 经济界, 2016, (3): 71-76.
Tang J, Liu X Y, Chen X B. Study on the development of animal husbandry in Tibetan pastoral areas on the Qinghai-Tibet Plateau—A case study of Ruoerge county, Aba prefecture. Econ Affairs, 2016, (3): 71-76 (in Chinese with English abstract).
[9] 何龙娟, 陈伟忠, 康永兴, 栾义君. 青藏高原生态农牧区农村综合发展能力评价与分析. 生态经济, 2013, 29(3): 122-125.
He L J, Chen W Z, Kang Y X, Luan Y J. Evaluation and analysis of integrated rural development capacity in ecological agricultural and pastoral areas on the Qinghai-Tibet Plateau. Ecol Econ, 2013, 29(3): 122-125 (in Chinese with English abstract).
[10] 周华坤, 赵新全, 周立, 唐艳鸿, 刘伟, 师燕. 层次分析法在江河源区高寒草地退化研究中的应用. 资源科学, 2005, 29: 63-70.
Zhou H H, Zhao X Q, Zhou L, Tang Y H, Liu W, Shi Y. Application of hierarchical analysis in the study of alpine grassland degradation in the river source area. Resour Sci, 2005, 29: 63-70 (in Chinese with English abstract).
[11] 陈勤, 孙雨珍, 董玉琛. “新疆小麦”种间杂种的细胞遗传学研究. 作物学报, 1985, 67: 23-29.
Chen Q, Sun Y Z, Dong Y C. Cytogenetic study on interspecific hybrids of Xinjiang wheat. Acta Agron Sin, 1985, 67: 23-29 (in Chinese with English abstract).
[12] 杨瑞武, 周永红, 郑有良, 胡超. 波兰小麦醇溶蛋白遗传差异及其与新疆稻麦的关系. 麦类作物学报, 2000, 20: 1-5.
Yang R W, Zhou Y H, Zhen Y L, Hu C. Genetic differences and the relationship of gliadin between T. polonicum and T. petropavlovskyi. J Triticeae Crops, 2000, 20: 1-5 (in Chinese with English abstract).
[13] 李美霞, 杨睿, 李有梅, 崔桂宾, 王竹林, 奚亚军, 刘曙东. 波兰小麦×普通小麦品系“中13”RIL群体籽粒特性的QTL定位. 麦类作物学报, 2012, 32: 813-819.
Li M X, Yang R, Li Y M, Cui G B, Wang Z L, Xi Y J, Liu S D. QTL analysis of kernel characteristics using a recombinant inbred lines (RILs) population derived from the cross of Tiriticum polonicum L. and Triticum aestivum L.line “Zhong 13’’. J Triticeae Crops, 2012, 32: 813-819 (in Chinese with English abstract).
[14] 杨睿, 刘联正, 李华, 钟欢, 杨兴圣, 王竹林, 刘曙东. 波兰小麦×普通小麦品系中13重组自交系(RIL)群体穗部性状的QTL分析. 农业生物技术学报, 2012, 20: 506-513.
Yang R, Liu L Z, Li H, Zhong H, Yang X S, Wang Z L, Liu S D. QTL analysis of spike traits in the 13 recombinant inbred lines (RIL) population of Tiriticum polonicum L. and Triticum aestivum L.lines. J Agric Biotech, 2012, 20: 506-513 (in Chinese with English abstract).
[15] 沈玮囡, 王竹林, 杨睿, 李美霞, 梁子英, 奚亚军, 孙风丽, 刘曙东. 波兰小麦品系XN555×普通小麦品系中13衍生重组自交系(RILs)群体中籽粒品质相关性状QTL定位. 农业生物技术学报, 2014, 22: 561-571.
Shen W Y, Wang Z L, Yang R, Li M X, Liang Z Y, Xi Y J, Sun F L, Liu S D. QTL analysis of grain quality related traits using recombinant inbred lines (RILs)derived from the cross of Triticum polonicumL. line XN555×T. aestivum L. line Zhong 13. J Agric Biotech, 2014, 22: 561-571 (in Chinese with English abstract).
[16] Michał K, Maciej M, Joanna M, Jolanta B, Elżbieta S, Urszula W, Marian W, Halina W. Intraspecific polymorphisms of cytogenetic markers mapped on chromosomes of Triticum polonicum L. PLoS One, 2016, 11: 1-14.
[17] Peng F, Wang C, Cheng Y, Kang H, Fan X, Sha L, Zhang H, Zeng J, Zhou Y and Wang Y. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta, 2018, 247: 1395-1406.
doi: 10.1007/s00425-018-2872-3 pmid: 29523961
[18] Jiang Y, Chen X, Chai S, Sheng H, Sha L, Fan X, Zeng J, Kang H, Zhang H, Xiao X, Zhou Y, Vatamaniuk O K, Wang Y. TpIRT1from polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Sci, 2021, 312: 111058-111071.
doi: 10.1016/j.plantsci.2021.111058
[19] 沈吉成, 李亚鑫, 赵彩霞, 叶发慧, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 52份波兰小麦种子性状分析. 麦类作物学报, 2021, 41: 834-841.
Shen J C, Li Y X, Zhao C X, Ye F H, Liu D M, Liu R J, Zhang H G, Chen W J. Analysis of seed traits of 52 wheat varieties (Triticum polonicum L.). J Triticeae Crops, 2021, 41: 834-841 (in Chinese with English abstract).
[20] 董攀, 李伟, 郑有良. 波兰小麦主要农艺性状分析. 麦类作物学报, 2007, 27: 216-222.
Dong P, Li W, Zheng Y L. Analysis on the agronomic traits of Triticum polonicum L. J Triticeae Crops, 2007, 27: 216-222 (in Chinese with English abstract).
[21] 王彦民, 王竹林, 奚亚军, 刘曙东. 波兰小麦对普通小麦醇溶蛋白的改良作用. 麦类作物学报, 2008, 28: 419-424.
Wang Y M, Wang Z L, Xi Y J, Liu S D. Improvement of alcoholic protein in common wheat by Triticum polonicum L. J Triticeae Crops, 2008, 28: 419-424 (in Chinese with English abstract).
[22] 余苗, 王卉, 问鑫, 高凤仙. 牧草品质的主要评价指标及其影响因素. 中国饲料, 2013, 24(13): 1-3.
Yu M, Wang H, Wen X, Gao F X. Main evaluation indexes of forage quality and influencing factors. China Feed, 2013, 24(13): 1-3 (in Chinese with English abstract).
[23] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.pp:30-38.
Bao S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000.pp:30-38 (in Chinese with English abstract).
[24] 刘录祥, 孙其信, 王士芸. 灰色系统理论应用于作物新品种综合评估初探. 中国农业科学, 1989, 22: 22-27.
Liu L X, Sun Q X, Wang S Y. Application of grey system theory to comprehensive evaluation of new crop varieties. Sci Agric Sin, 1989, 22: 22-27 (in Chinese with English abstract).
[25] 汤瑞凉, 王䶮. 农作物品种综合评判的熵权系数法研究. 资源开发与市场, 2002, 18(5): 3-14.
Tang R L, Wang Y. Study on entropy coefficient method for comprehensive evaluation of crop varieties. Resourc Dev Market, 2002, 18(5): 3-14 (in Chinese with English abstract).
[26] 曹雯梅, 刘松涛, 路红卫. 灰色系统理论在小麦新品种综合评判中的应用. 中国种业, 2005, 24(11): 48-50.
Cao W M, Liu S T, Lu H W. Application of gray system theory in the comprehensive evaluation of new wheat varieties. China Seed Ind, 2005, 24(11): 48-50 (in Chinese with English abstract).
[27] 郭瑞林, 路志芳, 吴秋芳, 刘亚飞. 小麦育种目标性状几种权重确定方法的比较. 麦类作物学报, 2014, 34: 1049-1053.
Guo R L, Lu Z F, Wu Q F, Liu Y F. Comparison of several weight determination methods for wheat breeding target traits. J Triticeae Crops, 2014, 34: 1049-1053 (in Chinese with English abstract).
[28] 张凡, 刘国涛, 杨春玲. 620份小麦种质资源农艺性状调查及其遗传多样性分析. 山东农业科学, 2022, 54(3): 15-21.
Zhang F, Liu G T, Yang C L. Survey of 620 wheat germplasm resources for agronomic traits and their genetic diversity analysis. Shandong Agric Sci, 2022, 54(3): 15-21 (in Chinese with English abstract).
[29] 许娜丽, 王新华, 马冬花, 杨杰, 李清峰, 刘凤楼, 刘彩霞, 刘根红, 张晓岗, 王掌军. 251份小麦种质资源的主要农艺与品质性状遗传多样性分析. 南方农业学报, 2021, 52: 2404-2416.
Xu N L, Wang X H, Ma D H, Yang J, Li Q F, Liu F L, Liu C X, Liu G H, Zhang X G, Wang Z J. Genetic diversity analysis of 251 wheat germplasm resources for major agronomic and quality traits. Southern J Agric, 2021, 52: 2404-2416 (in Chinese with English abstract).
[30] 郑凯, 顾洪如, 沈益新, 丁成龙. 牧草品质评价体系及品质育种的研究进展. 草业科学, 2006, 23: 57-61.
Zheng K, Gu H R, Shen Y X, Ding C L. Evaluation system of forage quality and research advances in forage quality breeding. Pratac Sci, 2006, 23: 57-61 (in Chinese with English abstract).
[31] 崔雄雄, 侯扶江, 常生华, 王召锋. 高寒牧区两个燕麦品种的产量与品质比较. 草业科学, 2018, 35: 1489-1495.
Cui X X, Hou F J, Chang S H, Wang Z F. Comparison of yield and nutritional quality of two oat (Avena sativa) varieties grown in the alpine pastoral region of China. Pratac Sci, 2018, 35: 1489-1495 (in Chinese with English abstract).
[32] 李春喜, 叶润荣, 周玉碧, 林丽, 孙菁, 张法伟, 彭立新. 高寒牧区不同燕麦品种饲草产量及品质的研究. 草地学报, 2014, 22: 882-888.
doi: 10.11733/j.issn.1007-0435.2014.04.032
Li C X, Ye R R, Zhou Y B, Lin L, Sun J, Zhang F W, Peng L X. Study on the yield and quality of different oat varieties in alpine pasture area. Acta Agrest Sin, 2014, 22: 882-888 (in Chinese with English abstract).
[33] 马晓东, 孙金金, 汪鹏斌, 赵一珊, 宋美娟, 鱼小军. 青海果洛高寒地区燕麦和小黑麦最佳混播比例筛选. 草业科学, 2020, 37: 753-761.
Ma X D, Sun J J, Wang P B, Zhao Y S, Song M J, Yu X J. Screening of the best mixing ratio of Avena sativa and × Triticale Wittmack in the high-cold area of Guoluo, Qinghai province. Pratac Sci, 2020, 37: 753-761 (in Chinese with English abstract).
[34] 裴亚斌, 杜文华, 刘汉成, 刘翠, 田新会. 甘南高寒牧区3种饲草不同种植模式下的生产性能及经济效益. 草业科学, 2020, 37: 791-799.
Pei Y B, Du W H, Liu H C, Liu C, Tian X H. Comparison of the production performance and economic benefits of three different forage planting models in the alpine grazing area of Gannan. Pratac Sci, 2020, 37: 791-799 (in Chinese with English abstract).
[35] 丁明磊, 王京宏, 王伟伟, 李嵩, 王志成, 张超, 孙风丽, 刘曙东, 奚亚军. 粮饲兼用型小麦种质资源筛选与评价. 草地学报, 2022, 30: 2027-2036.
doi: 10.11733/j.issn.1007-0435.2022.08.012
Ding M L, Wang J H, Wang W W, Li S, Wang Z C, Zhang C, Sun F L, Liu S D, Xi Y J. Screening and evaluation of germplasm resources of grain-feeding wheat. Acta Agrest Sin, 2022, 30: 2027-2036 (in Chinese with English abstract).
[36] 康志钰. 甘肃河西灌区玉米播期对优质小麦与粮饲兼用玉米带田生产能力的影响. 草业科学, 2003, 20: 18-21.
Kang Z Y. The effects of maize sowing period on productivity of strip farmland growing high-quality wheat and grain-feed corn. Pratac Sci, 2003, 20: 18-21 (in Chinese with English abstract).
[37] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11105
[38] 宋志均, 关立, 侯俊红, 韩勇, 薛鑫, 薛志伟, 张凡. 灰关联度确定权重法在小麦品种区域试验分析中的应用. 中国种业, 2016, 35(3): 27-31.
Song Z J, Guan L, Hou J H, Han Y, Xue X, Xue Z W, Zhang F. Application of gray correlation degree determination weight method in the analysis of regional trials of wheat varieties. China Seed Ind, 2016, 35(3): 27-31 (in Chinese with English abstract).
[39] 范成方, 史建民. 基于熵权的粮食种植效益综合评价: 以山东省玉米、小麦为例. 中国农业资源与区划, 2015, 36(3): 39-47.
Fan C F, Shi J M. A comprehensive evaluation of grain planting efficiency based on entropy power: taking corn and wheat in Shandong province as an example. Chin J Agric Resour Region, 2015, 36(3): 39-47 (in Chinese with English abstract).
[1] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[2] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[3] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[4] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[5] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[6] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[7] 宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响[J]. 作物学报, 2022, 48(11): 2908-2919.
[8] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[9] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[10] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
[11] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[12] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[13] 黄鑫,李耀光,孙婉,侯俊峰,马英,张剑,马冬云,王晨阳,郭天财. 不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥的响应[J]. 作物学报, 2018, 44(10): 1506-1516.
[14] 林祥,王东*. 不同底墒条件下补灌对冬小麦耗水特性、产量和水分利用效率的影响[J]. 作物学报, 2017, 43(09): 1357-1369.
[15] 吴晓丽,李朝苏,汤永禄,李俊,马孝玲,李式昭,黄明波. 四川盆地9000 kg hm-2产量潜力小麦品种的花后冠层结构、生理及同化物分配特性[J]. 作物学报, 2017, 43(07): 1043-1056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .