欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3007-3016.doi: 10.3724/SP.J.1006.2023.34015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

StvacINV1负调控马铃薯的耐旱性

巩慧玲1,*(), 林红霞1, 任小丽1, 李彤1, 王晨霞1, 白江平2,3   

  1. 1兰州理工大学生命科学与工程学院, 甘肃兰州 730050
    2甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    3甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2023-01-18 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-05
  • 通讯作者: 巩慧玲, E-mail: gonghl@lut.edu.cn
  • 基金资助:
    国家自然科学基金项目(31860397);国家自然科学基金项目(31360296);旱区作物逆境生物学国家重点实验室开放课题项目(CSBAAKF2018006);甘肃省自然科学基金重点项目(22JR5RA228)

StvacINV1 negatively regulates drought tolerance in potato

GONG Hui-Ling1,*(), LIN Hong-Xia1, REN Xiao-Li1, LI Tong1, WANG Chen-Xia1, BAI Jiang-Ping2,3   

  1. 1School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
    3College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-01-18 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-05
  • Supported by:
    National Natural Science Foundation of China(31860397);National Natural Science Foundation of China(31360296);Open Project of the State Key Laboratory of Crop Stress Biology for Arid Areas(CSBAAKF2018006);Key Program of Natural Science Foundation of Gansu Province(22JR5RA228)

摘要:

植物液泡酸性转化酶不可逆的催化蔗糖转化为葡萄糖和果糖, 在植物的生长和发育及其逆境适应中扮演重要的角色。马铃薯液泡转化酶基因StvacINV1参与调控薯块的糖化, 但其是否参与对干旱胁迫的调控尚不清楚。本研究以马铃薯品种‘Atlantic’和‘Russet Burbank’的StvacINV1 RNA干扰表达的转基因株系及其野生型为材料, 采用停止浇水进行自然干旱处理, 研究StvacINV1对马铃薯植株耐旱性的调控机制。结果表明干旱胁迫引起马铃薯叶片StvacINV1的表达量及其液泡酸性转化酶活性显著降低; 与野生型相比, 干旱胁迫下StvacINV1干扰效率高的转基因株系植株不易失水萎蔫、离体叶片的失水率低, MDA含量低且叶片的相对水分含量高, 由此表明StvacINV1干扰效率高的转基因株系的耐旱性高于野生型, 即StvacINV1负调控马铃薯的耐旱性; 进一步的分析表明, 干旱胁迫下StvacINV1干扰效率高的转基因株系的气孔开度和气孔导度显著低于野生型, 水分利用率显著高于野生型, 因此推测StvacINV1可能通过介导气孔的关闭来调节马铃薯植株的耐旱性; 干旱胁迫下StvacINV1干扰株系的蔗糖含量显著高于野生型, 且外源高浓度蔗糖处理可诱导气孔的关闭, 因此推测StvacINV1可能通过其底物蔗糖参与调控气孔的关闭; 外源ABA诱导的气孔关闭过程中, StvacINV1干扰株系比野生型更敏感。综上所述, 干旱胁迫下StvacINV1通过介导气孔的关闭负调控马铃薯植株的耐旱性, StvacINV1可能通过其所催化的底物蔗糖参与调控气孔的关闭, StvacINV1也参与ABA介导的气孔关闭。本研究为选育既耐糖化(块茎)又耐干旱的马铃薯品种提供理论依据。

关键词: 马铃薯, 液泡酸性转化酶, 耐旱性, 气孔关闭

Abstract:

Plant vacuolar acid invertase catalyses irreversible hydrolysis of sucrose into glucose and fructose, which plays a vital role in plant growth, development, and abiotic stress adaption. The vacuolar acid invertase gene StvacINV1 in potato (Solanum tuberosum L.) are involved in regulating cold-induced sweetening in tubers, however the physiological role of StvacINV1 during adaptation to drought stress conditions is not yet fully understood. To investigate the mechanism of StvacINV1 regulating drought toleration under natural drought stress (water was withheld), this experiment was conducted with potato cultivars ‘Atlantic’, ‘Russet Burbank’, and their StvacINV1-RNAi transgenic lines. The results showed that drought stress strongly reduced mRNA abundance of StvacINV1 and vacuolar acid invertase activity in the leaves of the wild-type plants and StvacINV1-RNAi transgenic lines. Compared with the wild type, the transgenic lines with high interference efficiency of StvacINV1-RNAi were less prone to slower wilting, lower water loss, lower MDA content, and higher relative water content in leaves under drought stress, which indicated that the transgenic strains with high interference efficiency of StvacINV1 had higher drought tolerance than wild type. StvaclNV1 regulated negatively drought tolerance of potao. Further analysis showed that under drought stress, stomatal aperture and stomatal conductance in highly interfered StvacINV1-RNAi transgenic lines were significantly lower than wild type, whereas water use efficiency was significantly higher, which demonstrated StvacINV1 might regulate the drought tolerance of potato plants by stomatal movement. Sucrose content in highly interfered StvacINV1-RNAi transgenic lines was significantly higher than wild type under drought stress, meanwhile the exogenous high concentration sucrose treatment can induce stomatal closure, which led us to speculate that StvacINV1 was involved in regulating stomatal closure through its catalytic substrate sucrose. Compared with wild type, StvacINV1-RNAi transgenic lines were more sensitive during ABA-induced stomatal closure. In conclusion, StvacINV1 negatively regulated the drought tolerance by stomatal closure in potato plants, and StvacINV1 may be involved in regulating stomatal closure through its catalytic substrate sucrose, and StvacINV1 was involved in ABA-induced stomatal closure. This study provides a theoretical basis for breeding potato varieties resistant to both sweetening (tubers) and drought stress.

Key words: potato, vacuolar acid invertase, drought tolerance, stomatal closure

表1

试验所用的引物序列"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
ef1-α CAAGGATGACCCAGCCAAG TTCCTTACCTGAACGCCTGT
StvacINV1 GGTACGATATTAACGGTGTCTGG AGAAGGAGAGGATCAGATAAG

图1

野生型和StvacINV1干扰株系干旱处理前后StvacINV1表达量(A)和液泡酸性转化酶活性(B) *: P < 0.05."

图2

野生型和StvacINV1干扰株系干旱处理前后的植株形态(A)、叶片相对水分含量(B)、丙二醛含量(C)和失水率(D和E) *: P<0.05."

图3

野生型和StvacINV1干扰株系干旱处理前后的气孔开度(A)、气孔导度(B)和水分利用率(C) *: P < 0.05."

图4

野生型和StvacINV1干扰株系干旱处理前后的蔗糖含量 *: P < 0.05."

图5

蔗糖处理对马铃薯气孔开度的影响 *: P < 0.05."

图6

ABA处理对马铃薯气孔开度的影响 *: P < 0.05."

[1] Tauzin A S, Giardina T. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci, 2014, 5: 293.
doi: 10.3389/fpls.2014.00293 pmid: 25002866
[2] 赵杰堂. 蔗糖转化酶在高等植物生长发育及胁迫响应中的功能研究进展. 热带亚热带植物学报, 2016, 24: 352-358.
Zhao J T. Advances in research on invertase in plant development and response to abiotic and biotic stresses. J Trop Suptrop Bot, 2016, 24: 352-358 (in Chinese with English abstract).
[3] Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 2004, 16: 3437-3447.
pmid: 15528298
[4] Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer A G. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol, 2010, 153: 260-272.
doi: 10.1104/pp.110.154443
[5] Wang L, Li X R, Lian H, Ni D A, He Y K, Chen X Y, Ruan Y L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol, 2010, 154: 744-756.
doi: 10.1104/pp.110.162487 pmid: 20699399
[6] Wang L, Ruan Y L. Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhStvacINV1-RNAi cotton plants. Plant Physiol, 2016, 171: 405-423.
doi: 10.1104/pp.16.00197 pmid: 26969720
[7] Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Tian S. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol, 2016, 172: 1596-1611.
pmid: 27694342
[8] McLaughlin J E, Boyer J S. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann Bot, 2004, 94: 675-689.
doi: 10.1093/aob/mch193
[9] Trouverie J, Chateau-Joubert S, Thévenot C, Jacquemot M P, Prioul J L. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta, 2004, 219: 894-905.
pmid: 15179513
[10] Liu X, Zhang C, Ou Y B, Lin Y, Song B, Xie C H, Liu J, Li X Q. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics, 2011, 286: 109-118.
doi: 10.1007/s00438-011-0632-1 pmid: 21691778
[11] Yuan B Z, Nishiyama S, Kang Y H. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manage, 2003, 63: 153-167.
doi: 10.1016/S0378-3774(03)00174-4
[12] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘. 作物学报, 2021, 47: 599-612.
doi: 10.3724/SP.J.1006.2021.04152
Li P C, Bi Z Z, Sun C, Qin T Y, Liang W J, Wang Y H, Xu D R, Liu Y H, Zhang J L, Bai J P. Key genes mining of DNA methylation involved in regulating drought stress response in potato. Acta Agron Sin, 2021, 47: 599-612 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04152
[13] Gervais T, Creelman A, Li X, Bizimungu B, Koeyer D D, Dahal K. Potato response to drought stress physiological and growth basis: Front Plant Sci, 2021, 12: 698060.
doi: 10.3389/fpls.2021.698060
[14] 王郁, 程鑫, 叶夕苗, 程李香, 李高峰, 文国宏, 王玉萍, 张峰. 不同品系马铃薯块茎末端糖化差异分析. 中国粮油学报, 2020, 35(7): 22-27.
Wang Y, Cheng X, Ye X M, Cheng L X, Li G F, Wen G H, Wang Y P, Zhang F. Analysis of sugar-end differences of potato tubersin different lines. J Chin Cereals Oils Assoc, 2020, 35(7): 22-27 (in Chinese with English abstract).
[15] Bhaskar P B, Wu L, Busse J S, Whitty B R, Hamernik A J, Jansky S H, Buel C R, Bethke P C, Jiang J. Suppression of the vacuolar invertase gene prevents cold-Induced sweetening in potato. Plant Physiol, 2010, 154: 939-948.
doi: 10.1104/pp.110.162545 pmid: 20736383
[16] Liu X, Lin Y, Liu J, Song B, Ou Y, Zhang H, Li M, Xie C. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnol J, 2013, 11: 640-647.
doi: 10.1111/pbi.12054 pmid: 23421503
[17] Lin Y, Liu T, Liu J, Liu X, Ou Y, Zhang H, Li M, Sonnewald U, Song B, Xie C. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and SUCROSE NONFERMENTING1-RELATED protein KINASE. Plant Physiol, 2015, 168: 1807-1819.
doi: 10.1104/pp.15.00664 pmid: 26134163
[18] Kyriacou M C, Siomos A S, Ioannides I M, Gerasopoulos D. The chip-processing potential of four potato (Solanum tuberosum L.)cultivars in response to long-term cold storage and reconditioning. J Sci Food Agric, 2009, 89: 758-764.
doi: 10.1002/jsfa.v89:5
[19] Eldredge E P, Holmes Z A, Mosley A R, Shock C C, Stieber T D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am Potato J, 1996, 73: 517-530.
doi: 10.1007/BF02851697
[20] Wang Y, Bussan A J, Bethke P C. Stem-end defect in chipping potatoes (Solanum tuberosum L.)as influenced by mild environmental stresses. Am J Potato Res, 2012, 89: 392-399.
doi: 10.1007/s12230-012-9259-y
[21] Burton W G. Senescence in stored potato tubers. Ann Appl Biol, 1977, 85: 433-436.
[22] Wu L, Bhaskar P B, Busse J S, Zhang R, Bethke P C, Jiang J. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci, 2011, 51: 981-990.
doi: 10.2135/cropsci2010.08.0473
[23] Zhu X, Richael C, Chamberlain P, Busse J S, Bussan A J, Jiang J, Bethke P C. Vacuolar invertase gene silencing in potato (solanum tuberosum L.)improves processing quality by decreasing the frequency of sugar-end defects. PLoS One, 2014, 9: 93381.
[24] Wiberley-Bradford A E, Bethke P C. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes. J Sci Food Agric, 2018, 98: 354-360.
doi: 10.1002/jsfa.8478
[25] Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol, 1999, 17: 708-711.
doi: 10.1038/10924 pmid: 10404166
[26] McKenzie M J, Chen R K Y, Harris J C, Ashworth M J, Brummell D A. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant Cell Environ, 2013, 36: 176-185.
doi: 10.1111/pce.2013.36.issue-1
[27] Chen S F, Liang K, Yin D M, Ni D A, Zhang Z G, Ruan Y L. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis. J Enzyme Inhib Med Chem J, 2016, 31: 1381-1385.
[28] Yang D, Xie Y, Sun H, Bian X, Ke Q, Kim H S, Ji C Y, Jin R, Wang W, Zhang C, Ma J, Li Z, Ma D, Kwak S S. IbINH positively regulates drought stress tolerance in sweetpotato. Plant Physiol Biochem, 2020, 146: 403-410.
doi: 10.1016/j.plaphy.2019.11.039
[29] Shang Y, Dai C, Lee M M, Kwak J M, Nam K H. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1in Arabidopsis. Mol Plant, 2016, 9: 447-460.
doi: S1674-2052(15)00467-0 pmid: 26724418
[30] 杜培兵, 杨文静. 马铃薯抗旱品种筛选及鉴定试验. 中国蔬菜, 2018, (9): 29-34.
Du P B, Yang W J. Screening and identification test of drought resistant potato varieties. China Veget, 2018, (9): 29-34 (in Chinese with English abstract).
[31] 田伟丽, 王亚路, 梅旭荣, 李玉中, 郭家选. 水分胁迫对设施马铃薯叶片脱落酸和水分利用效率的影响研究. 作物杂志, 2015, (1): 103-108.
Tian W L, Wang Y L, Mei X R, Li Y Z, Guo J X. Effect of water stress on ABA content in leaf and water efficiency of facilities potato. Crops, 2015, (1): 103-108 (in Chinese with English abstract).
[32] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000. pp 260-261.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 260-261 (in Chinese).
[33] 肖世远. 间苯二酚光度法测定蔗糖的适宜条件. 四川师范学院学报(自然科学版), 1998, 19: 293-295.
Xiao S Y. The suitable conditions of measuring cane sugar by using resorcinol-photometric method. J Sichuan Teach Coll (Nat Sci Edn), 1998, 19: 293-295 (in Chinese with English abstract).
[34] Ahiakpa J K, Magdy M, Karikari B, Munir S, Mumtaz M A, Tamim S A, Mahmood S, Liu G, Chen W, Wang Y, Zhang Y. Genome-wide identification and expression profiling of tomato invertase genes indicate their response to stress and phytohormones. J Plant Growth Regul, 2022, 41: 1481-1498.
doi: 10.1007/s00344-021-10384-5
[35] Albacete A, Cantero-Navarro E, Großkinsky D K, Arias C L, Balibrea M E, Bru R, Fragner L, Ghanem M E, González MDLC, Hernández J A, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. J Exp Bot, 2015, 66: 863-878.
doi: 10.1093/jxb/eru448 pmid: 25392479
[36] Abbas A, Shah A N, Shah A A, Nadeem M A, Alsaleh A, Javed T, Alotaibi S S, Abdelsalam N R. Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biology, 2022, 11: 539.
doi: 10.3390/biology11040539
[37] Egilla J N, Davies F T, Boutton T W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 2005, 43: 135-140.
doi: 10.1007/s11099-005-5140-2
[38] Ni D A. Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiol Plant, 2012, 34: 2449-2452.
doi: 10.1007/s11738-012-1036-5
[39] Antunes W C, Provart N J, Williams T C R, Loureiro M E. Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity. Plant Cell Environ, 2012, 35: 747-759.
doi: 10.1111/pce.2012.35.issue-4
[40] Medeiros D B, Souza L P, Antunes W C, Araújo W L, Daloso D M, Fernie1 A R. Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthes is during light-induced stomatal opening. Plant J, 2018, 94: 583-594.
doi: 10.1111/tpj.2018.94.issue-4
[41] Lima V F, Medeiros D B, Dos Anjos L, Gago J, Fernie A R, Daloso D M. Toward multifaceted roles of sucrose in the regulation of stomatal movement. Plant Signal Behav, 2018, 13: 1494468.
[42] Daloso D M, Dos Anjos L, Fernie A R. Roles of sucrose in guard cell regulation. New Phytol, 2016, 211: 809-818.
doi: 10.1111/nph.13950 pmid: 27060199
[43] Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D. Hexokinase mediates stomatal closure. Plant J, 2013, 75: 977-988.
doi: 10.1111/tpj.12258
[44] Koh E J, Lee S J, Hong S W, Lee H S, Lee H. The ABA effect on the accumulation of an invertase inhibitor transcript that is driven by the CAMV35S promoter in ARABIDOPSIS. Mol Cells, 2008, 26: 236-242
[45] Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009, 21: 2072-2089.
doi: 10.1105/tpc.108.063719 pmid: 19574437
[1] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[2] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[3] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[4] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[5] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
[6] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[7] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[8] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934.
[9] 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990.
[10] 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819.
[11] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[12] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[13] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[14] 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668.
[15] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .